期刊文献+

基于遗传算法的抗震钢框架多目标优化设计 被引量:21

MULTIOBJECTIVE OPTIMIZATION DESIGN OF ASEISMIC STEEL FRAMES USING GENETIC ALGORITHM
下载PDF
导出
摘要 考虑抗震钢框架优化问题具有多目标的特点,在遗传算法的基础上对抗震钢框架多目标优化设计进行了探讨.在无约束Pareto排序遗传算法的基础上,提出了一个简单、实用而又可以避免采用罚函数的全新排序方法,在此基础上形成了一种求解有约束多目标优化问题的Pareto遗传算法(CMOPGA),并给出了具体的算法流程图.以钢框架重量最轻和结构总动应变能最小为目标,基于相关的设计规范,给出了抗震钢框架多目标优化问题的一种合理提法.采用CMOPGA对一个两跨六层抗震钢框架实例进行了多目标优化设计,并提出了一个在Pareto最优解集的基础上选取妥协解的相对最小距离妥协原则.算例结果表明,采用CMOPGA求解抗震钢框架多目标优化问题是可行和有效的. The optimal design of an aseismic steel frame is a multiobjective optimization problem. This paper studies the optimization method based on genetic algorithm (GA). A new ranking approach without using penalty function methods is proposed to handle a constrained multiobjective optimization problem. This approach can deal with objective and constraint functions separately. Based on the new ranking approach, a GA-based optimization method for constrained multiobjective optimization problems (CMOPGA) is proposed, together with its flow chart. To minimize the weight of an aseismic steel frame and its total dynamic strain energy, a mathematical formulation of the multiobjective optimization design for the aseismic steel frame is established based on related codes. An example of a two-bay six-story aseismic steel frame is provided, and a compromise principle of relative minimum distance is proposed for designers to select the compromise solution from a Pareto optimal set in the absence of engineering experience. The optimal results show that CMOPGA is effective for the multiobjective optimization design of aseismic steel frames.
作者 黄冀卓 王湛
出处 《力学学报》 EI CSCD 北大核心 2007年第3期389-397,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 广东省自然科学基金项目(032032 06027195) 广东省科技计划项目(2005810301030)资助
关键词 抗震钢框架 多目标优化 PARETO 遗传算法 妥协解 aseismic steel frame, multiobjective optimization, Pareto, genetic algorithm, compromise solution
  • 相关文献

参考文献18

  • 1Park HS,Sung CW.Optimization of steel structures using distributed simulated annealing algorithm on a cluster of personal computers.Computers and Structures,2002,80:1305~1316
  • 2Fredricson H,Johansen T,Klarbring A,et al.Topology optimization of frame structures with flexible joints.Struct Multidisc Optim,2003,25:199~214
  • 3Prendes Gero MB,García AB,Coz Díaz JJ.A modified elitist genetic algorithm applied to the design optimization of complex steel structures.Journal of Constructional Steel Research,2005,61:265~280
  • 4唐文艳,顾元宪,李云鹏,蔡雷.遗传算法求解可行域分离的结构优化问题[J].力学学报,2003,35(3):361-366. 被引量:9
  • 5Li G,Zhou RG,Duan L,et al.Multiobjective and multilevel optimization for steel frames.Engineering Structures,1999,21:519~529
  • 6Min S,Nishiwaki S,Kikuchi N.Unified topology design of static and vibrating structures using multiobjective optimization.Computers & Structures,2000,75:93~116
  • 7崔逊学,林闯,方廷健.多目标进化算法的研究与进展[J].模式识别与人工智能,2003,16(3):306-314. 被引量:17
  • 8闫震宇,康立山,陈毓屏,付朋辉.一种新的多目标演化算法——稳态淘汰演化算法[J].武汉大学学报(理学版),2003,49(1):33-38. 被引量:8
  • 9邹秀芬,刘敏忠,吴志健,康立山.解约束多目标优化问题的一种鲁棒的进化算法[J].计算机研究与发展,2004,41(6):985-990. 被引量:14
  • 10Aguilar Madeira JF,Rodrigues H,Pina H.Multi-objective optimization of structures topology by genetic algorithms.Advances in Engineering Software,2005,36:21~28

二级参考文献61

  • 1Zhou M. Difficulties in truss topology optimization with stress and local buckling constraints. Structural Optimization, 1996, 11(2): 134-136.
  • 2Guo X, Koetsu Yamazaki, Cheng GD. A new approach for the solution of singular optima in truss topology optimization with stress and local buckling constraints. Structural and Multidisciplinary Optimization, 2001, 22(5): 364-373.
  • 3Sepulveda AE, Schmit LA. Approximationbased global optimization strategy for structural synthesis. AIAA J, 1993,31(1): 180-188.
  • 4Svanberg K. On Local and Global Optimal in Structural Optimization, in New Directions in Optimum Design.Atrek E and alt (ed.) John Wiley, 1984.
  • 5Cheng GD. Some aspects on truss topology optimization.Structural Optimization, 1995, 10(3/4): 173-179.
  • 6Rozvany GIN. Difficulties in truss topology optimization with local buckling and system stability constraints. Structural Optimization, 1996, 11(3/4): 213-221.
  • 7Hwang C L, Masud A S M. Multiple Objective Decision Making-Methods and Application. Berlin: Springer Verlag, 1979.
  • 8Deb K. Evolutioary Algorithms for Multi-Criterion Optimization in Engineering Desing. In: Kaisa M, et al, eds. Evolutionary Algorithms in Engineering and Computer Science, Chapter 8, John Wiley & Sons, Ltd, Chichester, UK, 1999, 135 - 161.
  • 9Fonseca C M, Finning P J. An Overview of Evolutionary Algorithms in Multiobjective Optimization. Evolutionary Computation,1995, 3(1): 1-16.
  • 10Wolpert D H, Macrmdy W G. No Free Lunch Theorems for Optimization. IEEE Trans on Evolutionary Computation, 1997, 1( 1 ) :67 - 82.

共引文献157

同被引文献162

引证文献21

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部