期刊文献+

基于相位一致的高分辨率遥感图像分割方法 被引量:55

Segmentation of High-resolution Remotely Sensed Imagery Based on Phase Congruency
下载PDF
导出
摘要 基于分水岭变换的图像分割性能在很大程度上依赖于用来计算待分割图像梯度的算法。根据频域相位信息对图像特征的表征能力,引入相位一致的思想计算图像特征,应用Log Gabor小波提取高分辨率遥感图像的多尺度梯度。接着在对相位一致梯度进行分水岭分割时发现,在抑制分水岭算法的过度分割方面,经典的基于前景标记和背景标记的方法并不适合于遥感图像的分割,给出一种基于前景标记和梯度重建的分水岭算法。对IKONOS Pan图像上的农田、厂房和居民楼等地物进行特征提取和图像分割实验,结果表明相位一致方法优于空域特征检测算子,根据相位一致特征得到较好的分水岭分割结果。 Segmentation of high-resolution remotely sensed imagery constructs the base of object recognition and object-oriented classification. Performance of watershed transform relies on the algorithm of gradient extraction from the original image. Phase congruency is introduced as a new methodology to detect gradient features from IKONOS Pan imagery. This model postulates that features are perceived at points in an image where the Fourier components are maximally in phase and that the type of features depends on the value of the phase. The multi-scale gradient images are obtained by applying Phase congruency model to the images with Log Gabor wavelet filters over 5 scales and 6 orientations. To restrain the over segmentation of watershed transform, Phase congruency gradient should be marked before the segmentation. But the classical method of marking with foreground and background is proved not suitable for high-resolution remotely sensed imagery. Then a new watershed transform algorithm based on foreground marking and gradient reconstruction is demonstrated. Feature extraction and segmentation are implemented from three types of objects selected from the IKONOS Pan imagery of Nanjing, i.e. paddy, workshop and house images. The results show that Phase congruency is better than Canny detector for the watershed based segmentation.
出处 《测绘学报》 EI CSCD 北大核心 2007年第2期146-151,186,共7页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金项目(40501047) 教育部高等学校博士学科点专项科研基金项目(20050284009)
关键词 特征提取 图像分割 相位一致 分水岭变换 高分辨率遥感图像 feature extraction image segmentation phase congruency watershed transform high-resolution remotely sensed imagery
  • 相关文献

参考文献24

  • 1BAATZ M,SCHAPE A.Object-oriented and Multi-scale Image Analysis in Semantic Networks[A].Proceedings of the 2nd International Symposium on Operationalization of Remote Sensing[C].Enschede:ITC,1999.
  • 2冈萨雷斯.数字图像处理(第2版)[M].北京:科学出版社,2003.60-127.
  • 3MARR D,HDLDRETH E C.Theory of Edge Detection[A].Proceedings of the Royal Society of London.Series B[C].London:The Royal Society,1980.207:187-217.
  • 4CANNY J F.A Computational Approach to Edge Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
  • 5OPPENHEIM A V,LIM J S.The Importance of Phase in Signals[A].Proceeding of the IEEE.1981,69[C].[s.l.]:[s.n.],1981.529-541.
  • 6MORRONE M C,OWENS R A.Feature Detection from Local Energy[J].Pattern Recognition Letters,1987,6(5):303-313.
  • 7MORRONE M C,BURR D C.Feature Detection in Human Vision:A Phase-Dependent Energy Model[A].Proceedings of the Royal Society of London,Series B,Biological Sciences[C].London:The Royal Society,1988.235 (1280):221-245.
  • 8KOVESI P.Invariant Measures of Image Features from Phase Information[D].Perth:The University of Western Australia,1996.
  • 9KOVESI P.Image Features from Phase Congruency[J].Videre:A Journal of Computer Vision Research,1999,1(3):1-26.
  • 10PUDNEY C,ROBINS M,ROBBINS B,et al.Surface Detection in 3D Confocal Microscope Images via Local Energy and Ridge Tracing[J].Journal of Computer-Assisted Microscopy.1996,8(1):5-20.

二级参考文献6

  • 1BESAG J. Spatial Interaction and Statistical Analysis of Lattice Systems[J]. Acad R Stat Soc B, 1974, 36:721-741.
  • 2FRANCOS J M, MEIRI A Z, PORAT B.A Unified Texture Modal Based on a 2-D Wold-Like Decomposition[J]. IEEE Trans. Signal Processing, 1993,41(8) :2 665-2 677.
  • 3LIU F, PICARD R W. Periodicity, Directionality, and Randomness: Wold Features for Image Modeling and Retrieval [ J ]. IEEE Trans Pattern Anal Machine Intell,1996, 18(7) :722-733.
  • 4DESCOMBES X, SIGELLE M, PRETEUX F. Estimating Gaussian Random Field Parameters in a Nonstationary Framework: Application to Remote Sensing Imaging[J].IEEE Trans. Image Processing, 1999, 8(4): 490-503.
  • 5LORETTE A, DESCOMBES X, ZERUBIA J. Texture Analysis through a Markovian Modeling and Fuzzy Classification: Application to Urban Area Extraction from Satellite Images[J]. International Journal of Computer Vision,2000, 36(3) :221-236.
  • 6PAPPAS T N. An Adaptive Clustering Algorithm for Image Segmentation [ J ]. IEEE Trans Signal Processing,1992, 40(4): 901-914.

共引文献9

同被引文献505

引证文献55

二级引证文献535

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部