期刊文献+

球面四元三角网的基本拓扑关系描述和计算 被引量:8

Describing and Computing Model of the Topological Relation in Spherical Surface Quaternary Triangular Mesh
下载PDF
导出
摘要 球面四元三角网具有多分辨率和层次组织的特性,已成为目前研究球面问题的有效方法之一。本文在此基础上,利用引入集合多算子和对称差的欧拉数,给出描述和计算球面栅格拓扑关系的四元组模型。该模型利用两空间目标间的交(∩)、差(\)、被差(/)和对称差(Δ)的内容是否为空来初步区分相离/相接、交叉、相等、包含/覆盖、被包含/被覆盖这五对拓扑关系。然后通过引入对称差的欧拉数来进一步区分传统模型难以区分的相离/相接、包含/覆盖和被包含/被覆盖这三对拓扑关系。 Spherical surface QTM (Quaternary Triangular Mesh) is one of an efficient tool to deal with the global data because of its advantages of multi-resolution and hierarchy. Based on characters of spherical surface QTM, set muti-operators and Euler-number of symmetric difference were presented to describing and computing model of the topological relation in spherical surface QTM. In this model, the topological invariant (empty or not empty) of the result of the intersection, difference, difference by and symmetric difference between two spatial objects are used to partially distinguish their five traditional topological relation, and then the Euler number of the result of symmetric difference between two spatial objects is introduced to confirm the other three topological relations of disconnected/ disjoin, contain/overlap, and contained by/overlaped by which the traditional methods can't distinguish.
出处 《测绘学报》 EI CSCD 北大核心 2007年第2期176-180,共5页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金项目(4047110840301042)
关键词 球面四元三角网 欧拉数 拓扑关系 spherical surface QTM Euler-number topological relation
  • 相关文献

参考文献11

  • 1DUTTON G.Polyhedral Hierarchical Tessellations:The Shape of GIS to Come[J].Geographical Information Systems,1991,1(3):49-55.
  • 2GOODCHILD M F,YANG Shi-ren.A Hierarchical Data Structure for Global Geographic Information Systems[J].Computer Vision and Geographic Image Processing,1992,54(1):31-44.
  • 3WHITE D,KIMERLING A J,SAHR K,SONG L.Comparing Area and Shape Distortion on Polyhedral-based Recursive Partitions of the Sphere[J].Int J Geographical Information Science,1998,12(8):805-827.
  • 4BARTHOLDI Ⅲ,GOLDSMAN P.Continuous Indexing of Hierarchical Subdivisions of the Globe[J].Int J Geographical Information Science,2001,15(6):489-522.
  • 5SAHR K,WHITE D,KIMERLING A J.Geodesic Discrete Global Grid Systems[J].Cartography and Geographic Information Science,2003,30(2):121-134.
  • 6赵学胜,陈军,王金庄.基于O-QTM的球面VORONOI图的生成算法[J].测绘学报,2002,31(2):157-163. 被引量:30
  • 7EGENHOFER M,SHARMA J.Topological Relations between Regions in IR2 and IZ2[A].Advances in Spatial Database[C].Berlin:Springer-Verlag,1993,316-336.
  • 8WINTER S,FRANK A.U.Topology in Raster and Vector Representation[J].Geoinformatica,2000,4(1):35-65.
  • 9赵学胜,陈军.基于球面四元三角网剖分的层次空间关系推理[J].测绘学报,2001,30(4):355-360. 被引量:7
  • 10LI Zhi-lin,ZHAO Ren-liang,Chen Jun.A Generic Algebra for Spatial Relations[J].Progress in Natural Science,2002,12(7):528-536.

二级参考文献27

  • 1Goodchild M F,Yang Shiren.A Hierarchical Data Structure for Global Geographic Information Systems[J].Computer Vision and Geographic Image Processing,1992,54(1):31-44
  • 2Chen Jun,Zhao Xuesheng,Li Zhilin.Algorithm for the Generation of Voronoi Diagrams on the Sphere based on QTM[J].Photogrammetric Engineering and Remote Sensing,2003,69(1):79-90
  • 3Bartholdi III,Goldsman P.Continuous Indexing of Hierarchical Subdivisions of the Globe[J].Int.J.Geographical Information Science,2001,15(6):489-522
  • 4Dutton G.Polyhedral Hierarchical Tessellations:the Shape of GIS to Come[J].Geographical Information Systems,1991,1(3):49-55
  • 5Li Zhilin,Li Yongli,Chen Yongqi.Basic Topological Models for Spatial Entities in 3-Dimensional Space[J].GeoInformatica,2000,4(4):419-433
  • 6Hou Miaole,Zhao Xuesheng,Chen Jun.Sphere Digital Space Based on Manifold:Definition,Properties and Applications[G].//Zhou Qiming,Li Zhilin.Spatial Analysis and Decision Support.Rotterdam:Balkema Publishers,2003
  • 7Hou Miaole,Zhao Xuesheng,Chen Jun.The Basic Topology Model of Spherical Surface Digital Space[C].Proceedings of 20th ISPRS Congress,Istanbul,2004
  • 8Rosenfeld A.Digital Topology[J].Am.Math.Month,1979,86:621-630
  • 9Yan Weimin,数据结构,1996年
  • 10Gooldchild M,CVGIP,1992年,54卷,1期,31页

共引文献36

同被引文献157

引证文献8

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部