期刊文献+

基于模糊神经网络的强化学习及其在机器人导航中的应用 被引量:13

Reinforcement learning based on FNN and its application in robot navigation
下载PDF
导出
摘要 研究基于行为的移动机器人控制方法.将模糊神经网络与强化学习理论相结合,构成模糊强化系统.它既可获取模糊规则的结论部分和模糊隶属度函数参数,也可解决连续状态空间和动作空间的强化学习问题.将残差算法用于神经网络的学习,保证了函数逼近的快速性和收敛性.将该系统的学习结果作为反应式自主机器人的行为控制器。 Behavior-based robot navigation is studied. The fuzzy neural network(FNN)and reinforcement learning (RL) are integrated. RL is utilized for structure identification and parameters tuning of FNN. The problem of continuous, infinite states and actions in RL is solved by using the function approximationof FNN. Furthermore, the residual algorithm is applied to the FNN learning, which guarantees the convergence and rapidity. Then, the learning results are employed to design the controller of the reactive robot system, by which the problem of navigation under complicated environment is solved effectively.
作者 段勇 徐心和
出处 《控制与决策》 EI CSCD 北大核心 2007年第5期525-529,534,共6页 Control and Decision
基金 国家自然科学基金项目(60475036)
关键词 强化学习 模糊神经网络 Q(λ)学习 机器人导航 Reinforcement learning Fuzzy neural network Q(λ)-learning Robot navigation
  • 相关文献

参考文献11

  • 1孙增圻.智能控制理论与技术[M].北京:清华大学出版社,2000..
  • 2Sutton R S,Barto A G.Reinforcement learning:An introduction[M].Cambridge:MIT Press,1998.
  • 3蒋国飞,吴沧浦.基于Q学习算法和BP神经网络的倒立摆控制[J].自动化学报,1998,24(5):662-666. 被引量:55
  • 4Claude F T.Neural reinforcement learning for behaviour synthesis[J].Robotics and Autonomous Systems,1997,22(3/4):251-281.
  • 5Jouffe L.Fuzzy inference system learning by reinforcement methods[J].IEEE Trans on Systems,Man and Cybernetics,1998,28(3):338-355.
  • 6Baird L C.Residual algorithms:Reinforcement learning with function approximation[C].Proc of the 12nd Int Conf on Machine Learning.San Francisco,1995:9-12.
  • 7张汝波.强化学习理论及应用[M].哈尔滨:哈尔滨工程大学出版社,2000.
  • 8Watkins C J,Dayan P.Q-learning[J].Machine Learning,1992,8(3):279-292.
  • 9Peng J,Williams R J.Incremental multi-step Q-learning[C].Proc of the 11th Int Conf on Machine Learning.New Brunswick:Morgan Kaufmann,1995:226-232.
  • 10Lin C H,Wang L L.Intelligent collision avoidance by fuzzy logic control[J].Robotics and Autonomous Systems,1997,20(1):61-83.

二级参考文献1

  • 1Peng J,博士学位论文,1993年

共引文献93

同被引文献117

引证文献13

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部