期刊文献+

闭环H_∞滤波在无源北斗/SINS导航系统中的实现 被引量:3

Realization of closed-cycle H∞ filtering in passive BD/SINS navigation system
下载PDF
导出
摘要 H∞滤波通常应用于系统模型和噪声特性不确定的环境,存在滤波精度不高的缺点.通过对H∞滤波引入闭环修正,在不影响滤波鲁棒性的前提下,有效地提高了系统精度.无源北斗/SINS组合导航系统的动态跑车实验结果表明,闭环H∞滤波下的组合导航精度优于相同滤波误差模型下的闭环Kalman滤波,并且具有参数设置简单、滤波稳定性强的优点. H∞ filtering usually is used in the special environment of the uncertain system model and noise character, and its low precision confines its application field. By applying new H∞ filtering with closed-cycle correction, the filtering precision is increased and the inherent robustness is kept. The trial run experiment of passive BD/SINS integrated navigation system shows that the precision of this closed-cycle H∞ filtering is higher than that of Kalman filtering with the same error model. Moreover, this new filtering has fewer parameters and more powerful robustness.
出处 《控制与决策》 EI CSCD 北大核心 2007年第5期566-568,共3页 Control and Decision
基金 国家自然科学基金项目(60472125)
关键词 组合导航 H∞鲁棒滤波 KALMAN滤波 闭环修正 Integrated navigation H∞ filter Kalman filter Closed-cycle correction
  • 相关文献

参考文献4

二级参考文献11

  • 1张明.Riccati不等式与H∞优化及挠性航天器的鲁棒控制方案:硕士学位论文[M].厦门:厦门大学,1994..
  • 2王正志,周宗潭,张良起.参数不确定系统的H_∞估计问题的显式解和中心解[J].自动化学报,1997,23(1):16-23. 被引量:5
  • 3张明,厦门大学学报,1997年,36卷,6期,825页
  • 4张明,硕士学位论文,1994年
  • 5袁建平,GPS在飞行器定位导航中的应用,2000年,241页
  • 6申铁龙,H∞ 控制理论及应用,1996年,114页
  • 7Kalman R. E.. A new approach to linear filtering and prediction problem[J]. Trans. ASME. 1960, 82D(3): 35-45.
  • 8Kalman, R. E. and Bucy, R. S.. New results in linear filtering and prediction theory[J], Journal of Basic Eng. , 1961, 95-108.
  • 9Babak Hassibi and Thomas Kailath. adaptive filtering[C]. International conference on acoustics, speech and signal processing, 1995. 949-952.
  • 10张明,施鼎汉.代数Riccati不等式与H∞滤波器[J].厦门大学学报(自然科学版),1997,36(6):825-828. 被引量:7

共引文献47

同被引文献36

  • 1吴海仙,俞文伯,房建成.高空长航时无人机SINS/CNS组合导航系统仿真研究[J].航空学报,2006,27(2):299-304. 被引量:36
  • 2王青,刘文美,董朝阳.一种带加速度补偿的H_∞次优滤波目标跟踪算法[J].系统仿真学报,2006,18(7):2042-2045. 被引量:7
  • 3宁晓琳,房建成.一种基于UPF的月球车自主天文导航方法[J].宇航学报,2006,27(4):648-653. 被引量:23
  • 4Cook K L B. The silent force multiplier: The history and role of UAVs in warfare[C]. Aerospace Conf on 2007 IEEE. Big Sky, 2007: 1-7.
  • 5Jin S H, Park J B, Kim K. Krein space approach to decentralized H∞ state estimation[J], lEE Proc of Control Theory and Applications, 2001, 148(6): 502-508.
  • 6Hao Yanling, Chen Minghui, Li Liangjun, et al. Comparison of robust H∞ filter and Kalman filter for initial alignment of inertial navigation system[J]. J of Marine Science and Application, 2008, 7(2): 116-121.
  • 7Yue Xiaokui. H∞ sub-optimal filter for low-cost intergrated navigation system[J]. Chinese J of Aeronautics, 2004, 17(4): 200-206.
  • 8Farrell A, Barth M. The global positioning system and inertial navigation[M]. New York: McGraw-Hill, 1999: 102-129.
  • 9Simon D. Optimal state estimation: Kalman, Hoo and nonlinear approaches[M]. New Jersey: John Wiley & Sons, 2006: 333-389.
  • 10Einiche G, White L. Robust extended Kalman filtering[J]. IEEE Trans on Signal Processing, 1999, 47(9): 2596-2599.

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部