期刊文献+

基于人体特征参数的CR系统摄影条件优化方法 被引量:1

CR Condition Optimization Based on Physical Feature Parameters
下载PDF
导出
摘要 用人工神经网络分析人体特征和计算机X射线摄影(CR)参数的定量关系,建立基于身体指数的CR摄影满意度下的人体特征参数、管电压与管电流.曝光时间和CR摄影得分为目标的0-1整数规划模型,用分组过滤方法简化解空间,最后用遗传算法求解.以拍摄胸片(PA)为对象的研究结果表明,CR摄影条件优化方法得到的结论与专家多年临床经验一致,人工神经网络和遗传算法可以在CR摄影中发挥作用,解决实际问题.该研究方法可以应用到CR系统对身体其他部位的摄影并推广到其他X射线摄影设备的应用之中. The quantitative relation between physical features and computerized radiography (CR) parameters is analyzed with artificial neural network to develop a 0-1 integer planning model based on physical feature parameters, tube voltage, tube current' exposure time and CR scoring according to the satisfiability of relevant photos for body indices. Grouped filtering method was used to simplify the solution space, then the optimized model is solved by genetic algorithm. The result of pleurography (PA) indicates that the conclusion drawn by this CR optimization method, is compatible with experts' long-time clinical experience and that both the artificial neural network and genetic algorithm play the role in CR and solving actual problems. In addition, this method can be used to analyze the CR photos of the rest of body, and extended to other X-ray photographic equipment.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第5期631-634,647,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60574050)
关键词 X射线摄影 影像质量 照射剂量 身体指数 人工神经网络 遗传算法 X-ray photograph image quality exposure dose body index artificial neural network genetic algorithm
  • 相关文献

参考文献10

  • 1联合国原子辐射效应科学委员会.电离辐射源与效应[M].北京:原子能出版社,1995.
  • 2Merbach J M.Simulation of X-ray projections for experimental 3D tomography[R].Linkoping:Linkoping Univ,1996.
  • 3Jan P,Beckman K,Geijer H.Dose-image optimization in digital radiology with a direct digital detector:an example applied to pelvic examinations[J].Eur Radiol,2002,12:1584-1588.
  • 4Noriega J R,Wang H.A direct adaptive neural network control for unknown nonlinear systems and its application[J].IEEE Trans Neural Networks,1998,9(1):27-34.
  • 5Hollis D C,Richard M B,Borkman J D.Neural network compensation for sensors[J].Expert Systems with Applications,1997,26(2):4-6.
  • 6Kowalczyk A.Discovering production rules with higher order neural networks[J].International Journal of Intelligent System,2001,7(11):107-134.
  • 7何大阔,王福利.基于可进化性的快速遗传算法[J].东北大学学报(自然科学版),2002,23(7):628-631. 被引量:13
  • 8Wang D,Yung K L,Lp W H A.A heuristic genetic algorithm for subcontractor selection in a global manufacturing environment[J].IEEE Trans on SMC,2001,31C(2):189-198.
  • 9Juidette H,Youlal H.Fuzzy dynamic path planning using genetic algorithms[J].Electronics Letters,2000,36(4):374-376.
  • 10Fischbach F,Ricke J,Freund T.Flat panel digital radiography compared to storage phosphor computed radiography:assessment of dose versus image quality in phantom studies[J].Invest Radiol,2002,37:609-614.

二级参考文献3

共引文献12

同被引文献8

  • 1Ang Y A,Stone D,Bingham C,et al. Rapid analysis & designmethodologies of high-frequency LCLC resonant inverter aselectrodeless fluorescent lamp ballast [ C ]//Proceedings ofthe 7 th International Conference on Power Electronics andDrive Systems. 2007 : 139 -44.
  • 2Kido H,Makimura S,Masumoto S. A study of electronic bal-last for electrodeless fluorescent lamps with dimming capabil-ities [C ] //Conference Record of the 2001 IEEE IndustryApplications Conference,Thirty-Sixth IAS Annuel Meeting.2001,2:889 -894.
  • 3Park D H, Kim H J, Joe K Y, et al. Zero-voltage-switchinghigh frequency inverter for electrodeless fluorescent lamp[C ]//Power Electronics Specialists Conference Recerd of29th Annual IEEE. 1998,2:2035 -2040.
  • 4Jang T E,Kim H J,Kim H. Dimming control characteristicsof electrodeless fluorescent lamps [ J ]. IEEE Transactionson Industrial Electronics,2009,56( 1 ) :93 - 100.
  • 5陈大华,陈育明.无极放电光源的进展[J].中国照明电器,2008(3):1-5. 被引量:11
  • 6王声纲,牛鸣德.Boost型APFC连续电流模型[J].中国西部科技,2009,8(24):21-22. 被引量:1
  • 7王长全,张贵新,董晋阳,邵明松,王新新,王赞基.无极灯启动特性研究[J].真空科学与技术学报,2011,31(5):536-539. 被引量:9
  • 8曾丽梅,苏昌林.电光源频闪测试技术研究[J].中国测试,2012,38(3):34-38. 被引量:8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部