期刊文献+

自适应入侵检测专家系统模型 被引量:6

Adaptive Intrusion Detection Expert System Model
下载PDF
导出
摘要 大多数入侵检测系统不能适应网络环境的变化,即不具备自适应性。针对此情况,提出了自适应策略,该策略由状态空间和策略空间构成,状态空间用来描述网络环境,策略空间用来描述采用的策略。对于状态空间中的某一具体的环境状态,在策略空间存在唯一的策略与之对应。在构建自适应策略的基础上,将基于规则的推理和基于事例的推理相结合,设计了自适应入侵检测专家系统模型(AIDESM)。AIDESM既有专家知识库,又有入侵事例库,利用自适应策略和评价学习机制,能够实现自适应入侵检测。实验结果表明,该自适应策略是比较有效的。 Most intrusion detection system can not adapt to the variation of network environment. Aiming at this problem, this paper proposes an adaptive strategy which composed of state space and strategy space. The former described network environment and the latter described the strategies. There is an exclusive strategy corresponds to a certain environment state in state space. On the base of the adaptive strategy, it designs an adaptive intrusion detection expert system model based on rule-based reasoning and case-based reasoning, namely, AIDESM, which had expert knowledge database and intrusion case database. It takes advantage of adaptive strategy and evaluation & learning mechanism to realize adaptive intrusion detection. The experiments indicate that adaptive strategy is effective.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第10期158-160,共3页 Computer Engineering
基金 教育部科技基金资助重点项目(03115) 重庆市科委科技攻关基金资助项目(CSTC.2004AA2001-8277-9)
关键词 入侵检测 数据挖掘 专家系统 自适应 Intrusion detection Data mining Expert system Adaptive
  • 相关文献

参考文献4

  • 1Andrew H,Andrew H,Eleazar E.Adaptive Model Generation:An Architecture for Deployment of Data Mining-based Intrusion Detection Systems[R].Department of Computer Science,Columbia University,New York,2002.
  • 2Han J,Kamber M.Data Mining:Concepts and Techniques[M].Beijing:High Education Press,2001.
  • 3Wilson R,Martinez T.Improved Heterogeneous Distance Functions[J].Journal of Artifcial Intelligence Reaearch,1997,6(1):1-34.
  • 4Manish M,Rakesh A,Jorma R.SLIQ:A Fast Scalable Classifier for Data Mining[C]//Proceedings of the 5^th International Conference on Extending Database Technology.1996.

同被引文献46

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部