摘要
介绍了迭代函数系及其分形插值的原理,用反例说明书[2]中关于分形插值函数一阶矩量计算公式是错误的,同时给出了分形插值函数一阶矩量的正确公式.而且将该公式推广到m阶,并用计算机中的Fortran语言对m阶矩量公式进行编程.只需输入迭代函数系的各参数及所需矩量的阶数,就可以得到所需的矩量,从而为矩量的计算提供了方便.
The paper introduces the iterated function system and the principle of fractal interpolation functions, gives a counter example to show that the formula of moment of fractal interpolation functions of order one in book [2] is false, and then establishes that correct formula. At the same time extends the formula tO order rn, uses the language of Fortran to weave procedure for the formula of order rn. Only inputting some parameters of iterated function system and the needed order, can get the result, it provides the convenience for calculating moment.
出处
《大学数学》
北大核心
2007年第2期130-134,共5页
College Mathematics
关键词
迭代函数系
分形插值函数
积分
矩量
iterated function system
fractal interpolation function, integration, moment