一类次二次Hamilton系统的次调和解的存在性
Existence of Subharmonic Solutions for a Class of Subquadratic Hamiltonian Systems
摘要
运用临界点理论中的极小极大方法得到一类次二次Hamilton系统的次调和解的存在性定理.
Existence of subharmonic solutions for a class of subquadratic Hamihonian systems by the minimax methods in critical point theory.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2007年第2期178-181,共4页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
湖北省教育厅重点科研资助项目(2003BA80)
参考文献12
-
1Rabinowitz P H.On subharmonic solutions of Hamiltonian systems[J].Comm Pure Appl Math,1980,33:609-633.
-
2Avila A I,Felmer P L.Periodic and subharmonic solutions for a class of second order Hamiltonian systems[J].Dynam Systems Appl,1994,3:519-536.
-
3Felmer P L,E A de B e Silva.Subharmonics near an equilibrium forsome second order Hamiltonian systems[J].Pro Roy Soc edinburghSect,1993,A123:819-834.
-
4Fonda A,Ramos M,Willem M.Subharmonic solutions for second order differential equations[J].Topol Methods Nonlinear Anal,1993(1):49-66.
-
5Wang Q,Wang Z Q,Shi J Y.Subharmonic oscillation with prescribed minimal period for a class of second order Hamiltonian systems[J].Nonlinear Anal,1997,28:1 273-1 282.
-
6Hirano N.Subharmonic solutions of second order differetial systems[J].J M at h Anal Appl,1995,196:266-281.
-
7Hirano N,Wang Z Q.Subharmonic solutions for second order Hamiltonian systems[J].Discrete Contin Dynam Systems,1998,4:467-474.
-
8Jiang M Y.Subharmonic solutions of second order Hamiltonian systems with potential changing sign[J].J Math Anal Appl,2000,244:291-303.
-
9Tang C L,Wu X P.Subharmonic solutions for nonautonomus sublinear second order Hamiltonian systems[J].J Math Anal Appl,2005,304:383-393.
-
10Mawhin J,Willem M.Critical point theory and Hamiltonian systems[M].New York:Springer-verl,1989.
-
1江芹,马晟.一类局部非二次Hamilton系统的次调和解的存在性[J].纯粹数学与应用数学,2008,24(3):537-542.
-
2江芹,马晟,杨旭华.一类次二次Hamilton系统的次调和解的存在性[J].长春师范学院学报(自然科学版),2006,25(4):17-19.
-
3魏兰阁,马醒花.关于二阶微分方程周期解的研究[J].保定师范专科学校学报,2004,17(4):2-5.
-
4丁同仁.关于亚线性Duffing方程的研究[J].应用数学学报,1989,12(4):449-455. 被引量:6
-
5万树园,王智勇.一类二阶Hamilton系统次调和解的存在性[J].四川师范大学学报(自然科学版),2017,40(2):172-176. 被引量:1
-
6马晟,江芹.一类一阶Hamilton系统的次调和解[J].数学的实践与认识,2016,46(2):256-261.
-
7沈小可,李春.一类p-哈密顿系统无穷多个周期解的存在性[J].西南大学学报(自然科学版),2013,35(2):73-76.
-
8欧增奇,唐春雷.一类半线性椭圆方程解的存在性(英文)[J].西南师范大学学报(自然科学版),2007,32(1):1-5. 被引量:16
-
9武君红,吴行平,唐春雷.一类带有次线性振动非线性项的两点边值问题无穷多个解的存在性[J].西南师范大学学报(自然科学版),2012,37(6):19-23.
-
10钱爱侠.一类Robin边值问题的解的存在性[J].数学学报(中文版),2010,53(6):1081-1086. 被引量:5