期刊文献+

求解一类不可微优化问题极大熵微粒群混合算法 被引量:6

A Maximum-Entropy Particle Swarm Optimization for a Class of Non-Differentiable Optimization Problems
下载PDF
导出
摘要 针对一类不可微优化问题,本文提出了一个新的算法—极大熵微粒群混合算法.首先利用极大熵方法把带约束的不可微优化问题转换成无约束的单目标最优化问题,然后利用微粒群算法对其进行求解.利用4个测试函数对其进行测试并于其它算法进行比较,计算结果表明,本文提出算法在求解的准确性和有效性方面均优于其它算法. To solve a class of non-differentiable optimization problems, this paper proposed a new method called maximum-entropy particles swarm optimization algorithm. First, using the maximum-entropy function, constrained non-differentiable optimization problem can be transformed to the approximation unconstrained differentiable optimization problem. Then using the particles swarm optimization to solve this problem. Four examples were used to demonstrate the validity of the method and the results were compared with the ones of other methods. It is showed that the proposed method is more accurate and effective.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2007年第2期193-196,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 辽宁省自然科学基金资助项目(2004F100)
关键词 微粒群算法 极大熵方法 不可微优化 particle swarm optimization maximum-entropy method non-differentiable optimization problem
  • 相关文献

参考文献10

二级参考文献73

  • 1[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 2[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 3[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 4[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 5[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 6[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 7[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 8[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 9[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.
  • 10[6]Kennedy J. The particle swarm: Social adaptation of knowledge[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Indiamapolis,1997.303-308.

共引文献543

同被引文献60

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部