期刊文献+

比率型非自治的两捕食者竞争-食饵模型的动力学行为 被引量:3

Dynamics of a Nonaugonomous Ratio-dependent Two Competing Predator-one Prey Model
下载PDF
导出
摘要 研究比率型非自治的捕食者-食饵模型.该系统是两个具有竞争关系的捕食种群捕食一个食饵.研究其动力学行为,包括持久性,全局渐近稳定性,周期解的存在唯一性. In this paper,we study a nonaugonomous ratio-dependent predator-prey system with two competing predator predate one prey. We show this system is permanent and globally asymptotically stable under some appropriate conditions; for the periodic case, we obtain conditions for existence,uniqueness and stability of a positive periodic solution.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期211-214,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省教育厅自然科学基金项目(200510476002)
关键词 非自治系统 持久性 全局渐近稳定性 比率型捕食系统 周期解 nonaugonomous system persistence global asymptotic stability ratio-dependent periodic solution
  • 相关文献

参考文献8

  • 1Arditi R,Ginzburg L R,Akcakaya H R.Variation in plankton densities among lakes:A case for ratio-dependent models[J].American Nat,1991,138:1 287-1 296.
  • 2Arditi R,Saiah H.Empirical evidence of the role of heterogeneity in ratio-dependent consumption[J].Ecology,1992,73:1 544-1 551.
  • 3Arditi R,Perrin N,Saiah H.Functional response and heterogeneities:An experiment test with caldocerans[J].OIKOS,1991,60:69-75.
  • 4Gutierrez A P.The physiological basis of ratio-dependent predator-prey theory:a methbolic pool model of Nicholson's blowflies as an example[J].Ecology,1992,73:1 552-1 563.
  • 5Arditi R,Ginzburg L R.Coupling in predator-prey dynamics:ratio-dependence[J].Theoretical Biol,1989,139:311-326.
  • 6Hanski I.The functional response of predator:worries about scale[J].TREE,1991,6:141-142.
  • 7徐瑞,陈兰荪.具有时滞和基于比率的三种群捕食系统的持久性与全局渐近稳定性[J].系统科学与数学,2001,21(2):204-212. 被引量:85
  • 8谭德君.基于比率的三种群捕食系统的持续生存[J].生物数学学报,2003,18(1):50-56. 被引量:24

二级参考文献5

共引文献91

同被引文献17

  • 1曾广钊,孙丽华.非自治阶段结构与时滞捕食模型的持久性和周期解(英文)[J].生物数学学报,2005,20(2):149-156. 被引量:11
  • 2陈兰荪.数学生态模型与研究方法[M].北京:科学出版社,1998.
  • 3Hallam T G, Clark C E and Jordan G S. Effects of toxicants on populations II. First order Kinetics[J]. J Math Biol, 1983, 18: 25-37.
  • 4Hallam T G, Clark C E and Lassiter R R. Effects of toxicants on populations I. Equilibrium environment exposure[J]. Ecol model, 1983, 18: 291-304.
  • 5Hallam T G, Ma Z E. Persistence in population models with demographic[J]. Math Biol, 1986, 24(2): 327-339.
  • 6Takeuchi y. conflit between the need to forage and the need to avoid competition persitence of two-species model[J]. Math Biosci, 1990 99(2): 184-194.
  • 7Zeng G Z, Chen L S, Chen J F. diffusion Lotka-Volterra model[J]. Persisitence and periodic orbits Math Computer Modelling, 1994 for two-species noautonomous 20(12): 69-80.
  • 8Wang kai. Permanence and global asymptotical stability of a predator-prey model with mutual interference[J]. Nonlinear Analysis:Real world Application, 2011, 12: 1052-1071.
  • 9Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. J Animal Ecvl, 1975, 44(1): 331-340.
  • 10DeAngelis D L, Goldstein R A,Oneill R V.A model trophic interaction[J]. Ecology, 1975, (56): 881-892.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部