期刊文献+

广义Baouendi-Grushin向量场上具有奇异位势的半线性退化发展不等方程

Semilinear Degenerate Evolution Inequalities with Singular Potential on Generalized Baouendi-Grushin Vector Fields
下载PDF
导出
摘要 研究与广义Baouendi-Grushin算子相关的具有奇异位势退化发展不等方程整解的存在性和不存在性,推广了文献中的结果.解的存在性定理的证明基于上解方法和变形Bessel函数的运用,解的不存在性定理则根据试验函数方法得到. The purpose of this paper is to study the existence and nonexistence of global solutions to the degenerate evolution inequalities with singular potential correlated to the generalized Baouendi-Grushin operator. The obtained results extend and improve upon those in the literature. To prove the existence results, we used the method of supersolution and the modified Bessel function. The nonexistence results are established by means of the test function method.
作者 原子霞
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2007年第3期331-338,共8页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10371099).
关键词 广义Baouendi—Grushin向量场 退化发展不等方程 位势 generalized Baouendi-Grushin vector fields degenerate evolution inequality potential
  • 相关文献

参考文献9

  • 1Fujita H.On the Blowing up of Solutions to the Cauchy Problem for ut=Δu+u^1+α[J].J Fac Sci Univ Tokyo,1966,Ⅰ(13):109-124.
  • 2Kartsatos A G,Kurta V V.On a Liouville-type Theorem and the Fujita Blow-up Phenomenon[J].Proc Amer Math Soc,2004,132:807-813.
  • 3Levine H,Meier P.The Value of the Critical Exponent for Reaction-diffusion Equations in Cones[J].Arch Rational Mech Anal,1990,109:73-80.
  • 4Pascucci A.Semilinear Equations on Nilpotent Lie Groups:Global Existence and Blow-up of Solutions[J].Le Matematiche,1998,LⅢ:345-357.
  • 5Laptev G G.Some Nonexistence Results for Higher-order Evolution Inequalities in Cone-like Domains[J].Electron Res Announc Amer Math Soc,2001,7:87-93.
  • 6Hamidi A E,Laptev G G.Existence and Nonexistence Results for Higher-order Semilinear Evolution Inequalities with Critical Potential[J].J Math Anal Appl,2005,304:451-463.
  • 7张慧清,钮鹏程.关于一类向量场的Picone恒等式和Hardy不等式[J].数学杂志,2003,23(1):121-125. 被引量:9
  • 8D' Ambrosio L.Hardy Inequalities Related to Grushin Type Operators[J].Proc Amer Math Soc,2004,132(3):725-734.
  • 9Watson G N.A Treatise on the Theory of Bessel Functions[M].London:Cambridge University Press,1966.

二级参考文献3

  • 1Hardy, G.H., Littlewood, J.E. and Polya, G. Inequalities,[M]. Cambrideg Univ. Press, 2nded. 1952.
  • 2Allegretto, W. and Huang, Y.X., A Picone's identity for the p-Laplacian and application. [J]. Nonlinear Aualysis, 1998. 32(7): 819-830.
  • 3Garofalo, N.,Unique Continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension[J]. J.Diff. Equ. 1993,(104): 117-146.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部