期刊文献+

基于数据模式聚类算法的离群点检测 被引量:3

Outlier Testing Method Based on Pattern Clustering Algorithm
下载PDF
导出
摘要 针对传统模式挖掘算法在事务包含模式定义上未考虑模式间的包含关系而使聚类结果不够优良的问题,提出一种新的基于模式聚类的离群点检测算法PCOT,该算法适合于高维数据空间,采用一种新的事务包含模式,通过将模式表示成超图,用超图分割方法对模式进行聚类.实验与分析结果表明,该算法能有效地在高维稀疏空间中发现离群点. Traditional mining algorithm does not contain relations which is defined in pattern. The clustering method based on traditional data pattern brings in different businesses together. Thus the result of the cluster is not good enough. In this paper, a new algorithm called PCOT ( pattern-based clustering outlier test) is presented. PCOT is suitable in high-dimensional space, which uses a new business containing pattern. In the algorithm, a novel hypergraph model is proposed to represent the relations among the patterns. Hypergraph partitioning method is used in clusering. Experiment shows that this approach can find the oufliers in high-dimensional sparse space effectively.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2007年第3期435-437,共3页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:60473042).
关键词 数据挖掘 离群点 聚类 超图分割 data mining outlier clustering hypergraph partitioning
  • 相关文献

参考文献5

二级参考文献36

  • 1杨欣斌 孙京诰 黄道.基于蚁群算法的聚类学习新方法[A]..第四届全球智能控制大会论文集[C].上海交通大学出版社,..
  • 2Barnett V, Lewis T. Outliers in Statistical Data, 3rd ed. [M]. New York :John Wiley, ,1994.
  • 3Edwin M Knorr, Raymond T Ng. Vladimir Tucakov. Distance-based outliers: algorithms and applications [ J ]. VLDB Journal, 2000,8 ( 3-4 ) : 237-253.
  • 4Edwin M Knorr, Raymond T Ng. Algorithmsfor Mining Distance-Based Outliers in LargeDatasets[A]. VLDB [C], New York: 1998,392-4O3.
  • 5Ng Raymond T, Han Jiawei. Efficient and effiective clustering methods for spatial data mining[ A ]. VLDB [ C ], Santiago, Chile : 1994,144-155.
  • 6Jeng B C, Liang T P. Fuzzy indexing and retrieval in case-based systems [ J ]. Expert Systems with Applications, 1995,8( 1 ) : 135-142.
  • 7范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 8Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. Knowledge discovery and data mining: towards a unifying framework. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996. 82~88.
  • 9Ng, R. T., Han, J. Efficient and effective clustering methods for spatial data mining. In: Bocca, J.B., Jarke, M., Zaniolo, C., eds. Proceedings of the 20th International Conference on Very Large Data Bases. Santiago: Morgan Kaufmann, 1994. 144~155.
  • 10Ester, M., Kriegel, H.-p., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996. 226~231.

共引文献62

同被引文献19

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部