期刊文献+

基于贝叶斯推理的水环境系统参数识别 被引量:15

Parameters identification for water environmental system based on Bayesian inference
下载PDF
导出
摘要 为了克服监测数据有限而且存在误差给水环境系统参数识别带来的困难,以一维河流水质模型方程为例,构建了水环境系统参数识别的贝叶斯算法.结合模型参数的先验分布和水质监测数据,通过贝叶斯定理计算获得了表征参数分布规律的联合后验概率密度函数.通过马尔科夫链蒙特卡罗模拟对后验分布进行了采样,获得了参数的后验边缘概率密度,并在此基础上获得了参数的数学期望等统计量.计算结果表明采用贝叶斯推理获得的模型参数估计具有很高的精度.此算法构造直观、简单,成功解决了水环境系统参数的可识别性问题. To overcome the difficulty in the identification of parameters of the water environmental system caused by the limited observation data with noise, Bayesian algorithm was constructed for the parameters identification of the water environmental system, taking one dimensional water quality model as example. Combined with the prior distribution of the model parameters and water quality observation data, joint posterior probability function which stands for the distribution characters was obtained by Bayes' Theorem. Markov chain monte carlo simulation(MCMC) was taken to sample the posterior distribution to get the marginal posterior probability function of the parameters, and the statistical quantities such as the mathematic expectation were calculated. The computational results indicate that parameters estimation by Bayesian method and MCMC sampling has a high precision. The algorithm's construction is direct and simple, which solves the identification problem of the water environmental system successfully.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2007年第3期237-240,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家重点基础研究发展计划(973)项目(2005CB724202) 国家自然科学基金资助项目(50609024)
关键词 环境水力学 水环境系统 贝叶斯推理 马尔科夫链蒙特卡罗模拟 参数识别 environmental hydraulics water environmental system Bayesian inference MCMC simulation parameter identification
  • 相关文献

参考文献7

  • 1Emmanuel K N,Rudolf S.Solving the parameter identification problem of mathematical models using genetic algorithms[J].Applied Mathematics and Computation,2004,153:651-658.
  • 2王薇,曾光明,何理.用模拟退火算法估计水质模型参数[J].水利学报,2004,35(6):61-67. 被引量:20
  • 3薛齐文,杨海天,胡国俊.共轭梯度法求解多宗量瞬态热传导反问题[J].计算物理,2005,22(1):56-60. 被引量:12
  • 4Thomas L,John S J H.Bayesian Methods:An Analysis for Statistician and Interdisciplinary Researchers[M].北京:机械工业出版社,2005:189.
  • 5Gelman A,Carlin J B,Stern H S,et al.Bayesian Data Analysis[M].London:Chapmen and Hall,1995.
  • 6Gelfand A E,Smith A F M.Sampling-based approaches to calculating marginal densities[J].Journal of the American Statistical Association,1990,85:398-409.
  • 7Metropolis N,Rosenbluth A W,Rosenbluth M N,et al.Equations of state calculations by fast computing machine[J].Journal of Chemistry and Physics,1953,21:1087-1091.

二级参考文献15

  • 1Beck J V, Blackwell B, Haji-Sheikh A. Comparison of inverse heat conduction methods using experimental data [ J]. Int J Heat Mass Transfer, 1996,39 (17): 3649 - 3657.
  • 2Chen Han-Taw, Lin Shen-Yih. Estimation of surface temperature in two-dimensional inverse heat conduction problens [ J].International Journal of Heat and Mass Transfer,2001,44: 1455- 1463.
  • 3Somchart Chantasiriwan. An algorithm for solving multidimensional inverse heat conduction problem [J]. International Journal of Heat and Mass Transfer, 2001,44: 3823 - 3832.
  • 4Refahi Abou khachfe, Yvon Jarny. Determination of heat sources and heat transfer coefficient for two-dimensional heat floe-numerical and experimental study [J]. International Journal of Heat and Mass Transfer, 2001,44:1309 - 1322.
  • 5Tseng A A, Chen T C, Zhao F Z. Direct sensitivity coefficient method for solving two-dimensional inverse heat conduction problems by finite-element scheme [J]. Numerical Heat Transfer, Part B, 1995,27:291 - 307.
  • 6Scarpa F, Milano G. Kalman smoothing technique applied to the inverse heat conduction problem [J]. Numerical Heat Transfer, Part B, 1995,28:79 - 96.
  • 7Huang C H, Wang S P. A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method [ J]. Int J Heat Mass Transfer, 1999,42 : 3387 - 3403.
  • 8Abou Khachfe R, Jarny Y. Numerical solution of 2-D nolinear inverse heat conduction problems using finite-element techniques [J].Numerical Heat Transfer, Part B, 2000,37:45- 67.
  • 9Lewis R W, Morgan K, Thomas H R. The finite element method in heat transfer analysis [ M]. UK:JOHN WILEY & SONS, 1996.11- 29.
  • 10Li H Y. Inverse source problem in radiative transfer for spherical media [ J]. Numerical Heat Transfer, Part B, 1997,31:251 - 260.

共引文献30

同被引文献180

引证文献15

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部