期刊文献+

再生核质点法在非线性冲击动力学中的应用 被引量:1

Application of reproducing kernel particle method in non-linear impact dynamics
下载PDF
导出
摘要 利用再生核方法来构造计算域函数的插值函数,通过区域内的质点参数来实现数值计算,满足一致性要求;在大变形、大转动、大应变的情况下,引入Jaumann应力和应变速率张量来表征实际应力和应变速率,进而可以表征出材料冲击条件下的本构关系;将本构关系引入冲击过程虚功原理,采取Lagrangian描述的方法,并通过再生核质点方法将能量积分方程离散,推导了非线性冲击过程的再生核质点法计算控制方程,给出了方程求解的Newmark递推公式和Newton-Raphson迭代方法.通过具体实例来说明了再生核质点法在非线性动力学中的应用过程,并验证了计算方法的正确性. The interpolation function was constructed through the reproducing kernel method and the numerical calculations in the whole field could be realized on those particles. The consistency was easily satisfied in those methods. Under the conditions of large deformation, large rotation, and large strain, the Jaumann stress and the strain rates were introduced to express real stress and strain rates, and were further used to characterize the material constitutive laws under the impact conditions. By introducing discrete method though reproducing kernel particle method(RKPM) into the non-linear dynamic problems, and also taking into account of the non-linearity of the material constitutive model, the Lagrangian descriptive method, the RKPM control equation for non-linear impact process, the Newmark recursion formula, and the Newton-Raphson iterative method are derived. By using several examples the numerical analysis procedure for RKPM of non-linear impact is proved. dynamics is illustrated and the feasibility of the method is proved.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2007年第3期262-265,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(50674002) 安徽省高校省级科学研究项目(2006KJ007C) 安徽理工大学引进人才基金资助项目(2006YB066)
关键词 再生核质点法 无网格法 非线性动力学 数值分析 RKPM meshless method non-linear dynamics numerical analysis
  • 相关文献

参考文献7

  • 1Nayroles B,Touzot G,Villon P.Generalizing the finite element method:diffuse approximation and diffuse elements[J].Computational Mechanics,1992,10(5):307-318.
  • 2Belytschko T,Lu Y Y,Gu L.Element free Galerkin methods[J].Int J Numer Methods Engrg,1994,37(2):229-256.
  • 3Liu W K,Jun S,Zhang Y F.Reproducing kernel particle method[J].Int J Numer Methods Fluids,1995,20(4):1081-1106.
  • 4Arluri S N,Zhu T.A new meshless local Pretrov-Galerkin approach in computational mechanics[J].Computational Mechanics,1998,22(2):117-127.
  • 5Onate E,Edelsohn S,Zienkiewicz O C,et al.A finite point method in computational mechanics application to convective transport and fluid flow[J].Int J Numer Methods Engrg,1996,39(22):3839-3866.
  • 6赵光明,宋顺成,杨显杰.高速冲击过程数值分析的再生核质点法[J].力学学报,2007,39(1):63-69. 被引量:6
  • 7钱伟长.柱形弹体撞击塑性变形的G.I.泰勒理论的分析解及其改进.应用数学和力学,1982,3(6):743-755.

二级参考文献21

  • 1史宝军,袁明武,李君.基于核重构思想的最小二乘配点型无网格方法[J].力学学报,2003,35(6):697-706. 被引量:12
  • 2Johnson GR,Beissel SR,Stryk RA.A generalized particle algorithm for high velocity impact computations.Computational Mechanics,2000,25:245-256.
  • 3Johnson GR.Normalized smoothing functions for SPH impact computations.Int J Num Meth Eng,1996,39:2725-2741.
  • 4Johnson GR,Stryk RA,Beissel SR.SPH for high velocity impact computations.Comp Meth Appl Mech Eng,1996,139:347-373.
  • 5Johnson GR.Status of EPIC codes,Materials characterization and new computing concepts at honeywell.Computational Aspects of Penetration Mechenics,Lecture Notes in Engineering,1983,3:24-35.
  • 6Liu WK,Jun S,Zhang YF.Reproducing kernel particle method.Int J Numer Methods Fluids,1995,20:1081-1106.
  • 7Liu WK,Jun S,Li SF,et al.Reproducing kernel particle methods for structural dynamics.Int J Numer Methods Engrg,1995,38:1655-1679.
  • 8Jun S,Liu WK,Belytschko T.Explicit reproducing kernel particle methods for large deformation problems.Int J Numer Methods Engrg,1998,41:137-166.
  • 9Chen JS,Pan C,Wu CT,et al.Reproducing kernel particle methods for large deformation analysis of nonlinear structures,Comput Methods Appl Mech Engrg,1996,139:195-229.
  • 10Liu WK,Jun S,Thomas SD,et al.Multiresolution reproducing kernel particle method for computation fluid mechanics.Int J Numer Methods Fluids,1997,24:1391-1415.

共引文献5

同被引文献23

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部