期刊文献+

Congruences for finite triple harmonic sums 被引量:1

Congruences for finite triple harmonic sums
下载PDF
导出
摘要 Zhao (2003a) first established a congruence for any odd prime p〉3, S(1,1,1 ;p)=-2Bp-3 (mod p), which holds when p=3 evidently. In this paper, we consider finite triple harmonic sum S(α,β, γ,ρ) (modp) is considered for all positive integers α,β, γ. We refer to w=α+β+ γ as the weight of the sum, and show that if w is even, S(α,β, γ,ρ)=0 (mod p) for p≥w+3; if w is odd, S(α,β, γ,ρ)=-rBp-w (mod p) for p≥w, here r is an explicit rational number independent ofp. A congruence of Catalan number is obtained as a special case. Zhao (2003a) first established a congruence for any odd prime p>3, S(1,1,1;p)≡-2Bp-3 (mod p), which holds when p=3 evidently. In this paper, we consider finite triple harmonic sum S(α,β,γ;p) (mod p) is considered for all positive integers α,β,γ. We refer to w=α+β+γ as the weight of the sum, and show that if w is even, S(α,β,γ;p)≡0 (mod p) for p≥w+3; if w is odd, S(α,β,γ;p)≡rBp≥w (mod p) for p≥w, here r is an explicit rational number independent of p. A congruence of Catalan number is obtained as a special case.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第6期946-948,共3页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project (No. 10371107) supported by the National Natural Science Foundation of China
关键词 Finite triple harmonic sums Recursive relation Bernoulli numbers Catalan numbers 有限三重调和和 同余方程 回归关系 柏努利数
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部