摘要
竞争-竞争-互惠交错扩散模型是一类强耦合的抛物型方程组,关于该模型时变解的整体存在性的研究结果很少,特别是在高维空间中。本文应用能量估计方法,极值原理和抛物型方程的正则性理论证明了:对竞争种群含弱交错扩散项的竞争-竞争-互惠交错扩散模型,它在任意维空间中存在古典的整体解。
The competitor-competitor-mutualist model with cross-diffusion is a strongly-coupled parabolic system. There are few results about the global existence of time-dependent solutions of this model, especially in higher dimensions space. In this paper, by using the energy estimate method, the maximum principle and the regularity of parabolic equations, we prove the global existence of classical solutions in any dimensional space for the competitor-competitor-mutualist model with weak cross-diffusion in the competitive species.
出处
《工程数学学报》
CSCD
北大核心
2007年第3期481-486,共6页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(10471157)
甘肃省自然科学基金(3ZS061-A25-015)
甘肃省教育厅科研项目(0601-21)
西北师范大学科技创新工程项目(NWNU-KJCXGC-03-39).
关键词
竞争-竞争-互惠模型
整体解
高维空间
competitor-competitor-mutualist model
global solutions
higher space dimensions