期刊文献+

有向图的结合数与计算

The Binding Number of a Digraph and its Computation
下载PDF
导出
摘要 本文讨论Caccetta-Hggkvist猜想的特殊情形猜想:如果有向图D的最小顶点出度δ^+(D)≥ n/3,则D存在△。受无向图G的结合数bind(G)≥3/2是G中存在△的充分条件的启发。我们在有向图中引入结合数的概念,讨论了该参数的一些基本性质,证明了有向图D的结合数bind(D)≥(5^(1/2)+1)/2是D中存在△的充分条件,并提出了关于结合数与围长之间联系的两个猜想,其结论弱于Caccetta-Hggkvist猜想。通过转化为最大流问题,我们最后给出了有向图结合数计算的多项式算法。 The special case of Caccetta-Haggkvist's conjecture supposes that the minimum outdegree δ+(D) ≥ n/3 of D is a sufficient condition that guarantees the existence of a directed triangle in D. For an undirected graph G, the binding number bind(G) ≥3/2 is a sufficient condition for G to have a triangle. In this paper, we generalize the concept of binding numbers to digraphs and discuss its basic properties. We prove that the binding number bind(D) ≥√5+1/2 of a digraph D is a sufficient condition that guarantees the existence of a directed triangle in D. In particular, we propose two conjectures on the relationship between the binding number and the girth of D, which can be deduced from Caccetta-Haggkvist's Conjecture. Furthermore, we show that the binding number bind(D) can be computed in polynomial time by transforming the problem into a network flow problem.
出处 《工程数学学报》 CSCD 北大核心 2007年第3期527-534,共8页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10101021).
关键词 有向图 Caccetta-Haggkvist猜想 结合数 多项式算法 directed graph Caccetta-Haggkvist conjecture binding number polynomial time
  • 相关文献

参考文献21

  • 1Bondy J A,Murty U S R.Graph Theory with Applications[M].New York:North-Holland,1979
  • 2Behzad M,Chartrand G,Wall C.On minimal regular digraphs with given girth[J],Fund Math,1970,69:227-231
  • 3Caccetta L,Haggkvist R.On minimal digraphs with given girth[J].Congr Numer,1978,21:181-187
  • 4Hamidoune Y O.A note on minimal directed graphs with given girth[J],J Combin Theory Ser B,1987,43:343-348
  • 5Hoang C T,Reed B.A note on short cycle in digraphs[J].Discrete Math,1987,66:103-107
  • 6Chvatal V,Szemeredi E.Short cycles in directed graphs[J].J Combin Theory Ser B,1983,35:323-327
  • 7Nishimura T.Short cycles in digraphs[J].Discrete Math,1988,72:295-298
  • 8Shen J.On the Caccetta-Haggkvist conjecture[J].Graphs and Combinatorics,2002,18:645-654
  • 9Graaf M de,Schrijver A.Directed triangles in directed graphs[J].Discrete Math,1992,110:279-282
  • 10Bondy J A.Counting subgraphs:a new approach to the Caccetta-Haggkvist conjecture[J].Discrete Math,1997,165,166:71-80

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部