期刊文献+

线性隐写码的性质与构造 被引量:3

The Properties and Constructions of Linear Steganographic Codes
下载PDF
导出
摘要 本文从隐写术的安全性需求出发抽象出一个新的编码问题,称之为隐写码。利用线性空间的直和分解得到了一种线性隐写码的构造方法。通过引入线性空间t阶维数的概念将线性隐写码问题转化成了一个代数问题,从而得到了线性隐写码长度的上界,并由此定义了最大长度可嵌入码。证明了线性最大长度可嵌入码与线性完备纠错码有1-1对应关系。 A new coding problem, steganographic codes (abbreviated stego-codes), is derived from the problem of steganography. First, the method for constructing linear stego-codes is proposed by using the direct sum of vector subspaces. Secondly, the problem of linear stego-codes is converted to an algebraic problem by introducing the tth dimension for vector spaces. The bound on the length of linear stego-codes is obtained, based on which the maximum length embeddable (MLE) codes are brought up. Furthermore, it is shown that there is a one-to-one correspondence between linear MLE codes and linear perfect error-correcting codes.
出处 《工程数学学报》 CSCD 北大核心 2007年第3期547-550,共4页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(60473022) 河南省自然科学基金(0511011300).
关键词 隐写术 隐写码 最大长度可嵌入码 完备码 steganography stego-codes MLE codes perfect codes
  • 相关文献

参考文献4

  • 1Crandall R.Some notes on steganography[OL].http://os.inf.tu-dresden.de/~westfleld/crandall.pdf,1998
  • 2Tseng Y C,Pan H K.Data hiding in 2-color images[J].IEEE Transaction on Computers,2002,51(7):873-878
  • 3Westfeld A.High capacity despite better steganalysis(F5-A Steganographic Algorithm)[C]//Information Hiding,4th International Workshop.Berlin:Springer-Verlag,2001:289-302
  • 4MacWilliams F J,Sloane N J A.The Theory of Error-correcting Codes[M].New York:North,Holland Publishing Company,1977

同被引文献68

  • 1Crandall R. Some notes on steganography, http://os.inf.tu- dresden.de/-westfeld/Crandall, pdf. 2007.12.
  • 2Westfeld A. F5-A steganography algorithm[C]. Proc.4th International Workshop on Information Hiding, Lecture Notes in Computer Science, 2001, Vol.2137: 289-302.
  • 3Tseng Y, Chen Y, and Pan H. A secure data hiding scheme for binary images[J]. IEEE Transactions on Communications, 2002, 50(8): 1227-1231.
  • 4Fridrich J, Goljan M, and Lisonek P, et al.. Writing on wet paper[J]. IEEE Transactions on Signal Processing, Third Supplement on Secure Media, 2005, 53: 3923-3935.
  • 5Rifa-Pous H and Rifa J. Product perfect codes and steganography[J]. Digital Signal Processing, 2009, 19(4): 764-769.
  • 6Munuera C. Steganography and error-correcting codes[J]. Signal Processing, 2007, 87(6): 1528-1533.
  • 7Fridrich J, Goljan M, and Soukal D. Wet paper codes with improved embedding efficiency[J]. IEEE Transactions on Information Security and Forensics, 2006, 1(1): 102-110.
  • 8Moulin P and Wang Y. New results on steganographic capacity[C]. Proceeding of 38th. Annual Conference on Information Sciences and Systems. Princeton, New Jersey, USA, 2004: 813-818.
  • 9张新鹏,王朔中.基于稀疏表示的密写编码[J].电子学报,2007,35(10):1892-1896. 被引量:9
  • 10Zielinska E, Mazurczyk W, Szczypiorski K. Trends in steganography [ J ]. Communications of the ACM, 2014, 57(3) : 86 -95.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部