期刊文献+

基于Bayes网的软件可靠性模型研究与系统设计 被引量:2

Software Reliability Model Research and System Design Based on Bayesian Network
下载PDF
导出
摘要 传统的软件可靠性预测主要是概率方法,但其存在假设与实际不符的缺点。利用Bayes网,充分利用专家知识和清晰表达相关因素关系的优点,构建了基于Bayes网的软件可靠性预测模型。该模型不仅考虑软件不完全排错和排错时间,同时把软件可靠性因素也考虑在内,增强了其准确和有效性,并基于BN Tookit软件包以MATLAB语言通过实例给以验证。为弥补MATLAB的GUI设计不方便的缺点,给出了VC和MATLAB混合编程实现软件可靠性预测的系统设计思路。 Probability method is tradition method of software reliability prediction, but it has the shortcoming of hypothesis inconsistent with reality. We establish software reliability prediction model based on Bayesian network, which has the strongpoint of using the expert knowledge and limpidly expressing the relevance factor. The model, which considers the uncompleted error correction and time of correcting error, as well as software reliability factor, improves the prediction accuracy and validity. We validated it using MATLAB based on BNT. MATLAB is difficult to realize GUI, so in the end we give out the system design of using VC and MATLAB mixed-programming.
作者 吴良清
出处 《电子工程师》 2007年第5期39-41,66,共4页 Electronic Engineer
关键词 软件可靠性 马尔可夫条件 软件可靠性预测模型 BAYES网 BNT软件包 software reliability Markov condition software reliability predication model bayesian network BNT software package
  • 相关文献

参考文献9

  • 1FAN Chin Feng, YU Yuan Chang. BBN-based software project risk management [J]. Journal of Systems Software, 2004,73 (2) : 193-203.
  • 2STAMELOS I, ANGELIS L, DIMOU P, et al. On the use of Bayesian belief networks for the prediction of software productivity [ J]. Information and Software Techniques, 2003, 45(1):51-60.
  • 3FENTON N E, NElL M, MARSH W, et al. Predicting software defects in varying development lifecycles using Bayesian nets[J]. Information and Software Technology, 2007,49( 1 ) :32-43.
  • 4BAI C G, HU Q P, XIE M, et al. Software failure prediction based on a Markov Bayesian network model [ J ]. The Journal of Systems and Software, 2005, 74 (3) : 275-282.
  • 5汪荣贵,张佑生,高隽,彭青松.从确信因子模型到Bayes网络[J].计算机科学,2004,31(10):182-188. 被引量:2
  • 6尹云飞,钟智,张师超.软件科学中Halstead模型的改进[J].计算机应用,2004,24(10):130-132. 被引量:4
  • 7MUSA J D. Sofiwarereliability measurement, Prediction, application[M]. New York, NY, USA: McGraw-Hill, 1987.
  • 8KLEINRICK L. Queuing systems, Volume 1 : Theory [M].New York, NY, USA: John Wiley & Sons, 1975.
  • 9BNT软件包[EB/OL].http://bnt.sourceforge.net/

二级参考文献26

  • 1[1]HALSTEAD MH.Elements of Software Science[M].Amsterdam:Elsevier Press,1977.
  • 2Buchanan B G,Shortliffe E H,et al. Rule -based Expert systems:The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading, MA, 1984
  • 3Buxton H,Gong S. Visual Surveillance in a Dynamic and Uncertain World. Artificial Intelligence, 1995,78: 431-459
  • 4Cooper G F. The computational complexity of probabilistic inference using Bayesian belief networks. , AI, 1990,42: 393-405
  • 5Chickering D, Heckerman D, Meek C. A Bayesian Approach to Learning Bayesian Networks with Local Structure. In: Proc. of Thirteenth Conf. on Uncertainty in Artificial Intelligence, Providence, RI, pages 80-89. Morgan Kaufmann, Aug. 1997. 80~89
  • 6Castillo E, Gutiérrez J M,Hadi A S. Expert Systems and Probabilistic Network Models, New York: Springer-Verlag. Press,1997
  • 7Duda R, Hart P, Nilsson N. Subject Bayesian Methods for rulebased inference system. In:proc of National Computer Conf. Vol.45,AFIPS, 1976. 1075-1082
  • 8Giarratano J, Riley G. Expert Systems Principles and Programming. PWS Publish Company, 1998
  • 9Heckerman D. Probabilistic interpretations for MYCIN's Certainty factors. In: Kanal L N, Lemmer J F,eds. Uncertainty in Artificial Intelligence, North-Holland, Amsterdam,1986. 298-312
  • 10Heckerman D, Geiger D, Chickering D. Learning Bayesian networks: The Combination of Knowledge and Statistical Data. Machine Learning,1995, 20:197-243

共引文献5

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部