期刊文献+

基于平面散乱点集的曲线重建算法 被引量:4

Curve Reconstruction Algorithm Based on Planar Unorganized Point Sets
下载PDF
导出
摘要 在反求工程中,基于散乱数据点的曲线重建研究有着重要的意义。本文给出了一种基于投影的移动最小二乘(MLS)曲线重建方法。首先快速搜索散乱点的K邻近,并引入相关性概念,应用MLS法细化散乱点集,最后通过排序和简化重建曲线。实验表明,细化点集准确地反映了数据点的形状和走向,拟合效果良好,效率较高。本文算法可应用于运动曲面重建中的轮廓线拟合。 The study of curve reconstruction based on unorganized data points has great importance in reverse engineering. We propose a curve reconstruction algorithm for planar unorganized point sets using the moving least squares (MLS) based on projection. First, we search fast for K-nearest neighbors; then, we introduce the concept of correlation for curve reconstruction of unorganized point cloud of varying thickness. After the unorganized point sets were thinned with the MLS, a smooth B-spline curve that faithfully represents their orientation and shape was reconstructed by ordering and parameterizing the thinned point sets. The curve reconstruction algorithm can be applied to profile curve fitting in kinematic surface reconstruction.
出处 《机械科学与技术》 CSCD 北大核心 2007年第4期455-458,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 高等学校优秀青年教师教学科研奖励计划 江苏省创新人才培养基金项目(BK2001408) 航空科学基金项目(03H52059)资助
关键词 反求工程 散乱点集 移动最小二乘法 曲线重建 reverse engineering unorganized point set moving least-squares (MLS) curve reconstruction
  • 相关文献

参考文献8

  • 1Varady T,Martin R R,Cox J.Reverse engineering of geometric models-an introduction[J].Computer-Aided Design,1997,29(4):255 -268.
  • 2Pottamann H,Randrup T.Rotational and helical surface approximation for reverse engineering[J].Computing,1998,60:307 -322.
  • 3Fang L,Gossard D C.Fitting 3D curves to unorganized data points using deformable curves[A].In:Visual Computing(Processing of CG International' 92)[C],Springer,Berlin,1992,535- 543.
  • 4McLain D.Drawing contours from arbitrary data points[J].The Computer Journal,Computation,1974,17 (11):178 - 181.
  • 5Levin D.The approximation power of moving least-squares[J].Mathematics of Computation,1998,67:1517 - 1531.
  • 6In-Kwon Lee.Curve reconstruction from unorganized points[J].Computer-Aided Geometric Design,2000,17:161 - 177.
  • 7Donald Hearn M,Parline Baker.Computer Graphics C Version[M].Prentice Hall,Inc.1997.
  • 8卫炜,张丽艳,周来水.一种快速搜索海量数据集K-近邻空间球算法[J].航空学报,2006,27(5):944-948. 被引量:11

二级参考文献7

  • 1熊邦书,何明一,俞华璟.三维散乱数据的k个最近邻域快速搜索算法[J].计算机辅助设计与图形学学报,2004,16(7):909-912. 被引量:65
  • 2Beckmann N,Krigel H P,Schneider R,et al.The R*-tree:an efficient and robust access method for points and rectangles[C]//Hector G M,Jagadish H V.Proc of the ACM SIGMOD Conf.Atlantic:[s.n.],1990:322-331.
  • 3White D A,Jain R.Similarity indexing with the SS-tree[C]//Stanley YWS.Proc of the 12th Int'l Conf on Data Engineering.New Orleans:IEEE ComputerSociety,1996:516-523.
  • 4Katayama N,Satoh S.The SR-tree:an index structure for high-dimensional nearest neighbor queries[C]//Peckham J.Proc of the ACM SIGMOD Conf.Tucson:[s.n.],1997:369-380.
  • 5Goodsell G.On finding p-th nearest neighbors of scattered points in two dimensions for small p[J].Computer Aided Geometric Design,2000,17(4):387-392.
  • 6Piegl L A,Tiller W.Algorithm for finding all K nearest neighbors[J].Computer Aided Design,2002,34(2):167-172.
  • 7周儒荣,张丽艳,苏旭,周来水.海量散乱点的曲面重建算法研究[J].软件学报,2001,12(2):249-255. 被引量:131

共引文献10

同被引文献31

  • 1刘金义,刘爽.Voronoi图应用综述[J].工程图学学报,2004,25(2):125-132. 被引量:74
  • 2陈敏,姜小敏,陶涛,沈耀仁.数控加工中平面参数曲线的拟合[J].机床与液压,2006,34(4):70-72. 被引量:4
  • 3POTTMANN H, WANG W P. Fitting B - spline curves to point clouds by squared distance minimization [ R ]. HKU : CS Tech Report ,2004.
  • 4DOUROS I,DEKKER L,BUXTON B. Reconstruction of the surface of the human body from 3D scanner data using B - splines[ C]//SPIE Proceedings. California: [ s. n. ], 1999:3640 - 3656.
  • 5Hua Q,Kai C,Yan L.Optimai circular arc interpolation for NC tool path generation in contour manufacturing[J].Computer-Aided design,1997,29(11):751-760.
  • 6KORSTERS M. Curvature-dependent parameterization of curves and surfaces[J]. Computer Aided Design, 1991,23 (8):569-578.
  • 7SARKAR B,MENQ C H. Parameter optimization in approximating curves and surfaces to measurement data[J].Computer Aided Geometric Design, 1991,8 (4) : 267-290.
  • 8YANG Xun-nian,WANG Guo-zhao. Planar point set fairing and fitting by arc splines[J]. Computer Aided Design, 2001,33(1) :35-43.
  • 9POTTMANN H, RANDRUP T. Rotational and helical surface approximation for reverse engineering[J]. Compuring, 1998,60(4) : 307-322.
  • 10GOSHTASBY A A. Grouping and parameterizing irregularly spaced points for curve fitting[J]. ACM Transaction on Graphics, 2000,19 (3) : 185 -203.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部