摘要
利用Lakshmikantham等人建立的脉冲微分方程不等式研究了一类二阶脉冲常微分方程解的振动性,获得了此类方程振动所应具备的充分条件。同时改进了一些已知结果。最后用一个具体例子说明了是否带有脉冲对微分方程的振动性有很大的影响。
This paper considered the oscillatory behavior of solutions of a second-order impulsive ordinary differential equation by using impulsive differential inequalities established by Lakshmikantham et al. Sufficient conditions were obtained for all solutions of this type of equations to be oscillatory, illustrating that impulses play an important role in giving rise to the oscillation of equations. In particular, our work generalizes some known results. Finally, an example was presented to explain the key role of impulses in generating oscillatory.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第3期39-48,共10页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(10371040,10671069)
关键词
振动
二阶微分方程
脉冲
oscillation
second-order differential equation
impulses