期刊文献+

复杂结构塑性极限分析的修正弹性补偿法 被引量:9

MODIFIED ELASTIC COMPENSATION METHOD FOR LIMIT ANALYSIS OF COMPLEX STRUCTURES
下载PDF
导出
摘要 弹性补偿法(ECM)是结构塑性极限载荷分析中一种简单有效的方法,但对复杂结构其计算结果往往存在较大误差。采用Banach不动点原理,分析ECM法计算下限极限载荷时存在的收敛性问题,指出只有在弹性模量迭代序列满足压缩映射条件时,才能得到极限载荷的较好逼近值,从而提出复杂结构极限分析的修正弹性补偿法(KtECM)。该方法采用一种结构主要承载单元的弹性模量迭代序列均满足压缩映射条件的迭代方法,并引入与结构应力集中系数相关的调整因子λ,给出名义应力的较为合理的定义方法,建立调整因子与应力集中系数之间的关系式。典型复杂结构的极限载荷分析计算表明:KtECM具有简单、高效、易于工程应用等优点,能够提高对复杂结构极限载荷的计算精度,调整因子λ的引入可以起到协调计算精度与时间的作用。 The elastic compensation method (ECM) for structural limit analysis is a simple and effective method for simple structures. However, relatively greater computational errors and divergence are often caused for complex structures. Addressing on these problems, the present paper employs the fixed point theorem in Banach space to discuss the convergence problem of the ECM for lower bound limit load calculations. It can be pointed out that a good limit load solution can be achieved only when the iterative elastic modulus sequences satisfy the condition of contraction mapping. Based on this idea, a modified elastic compensation method (KtECM) is proposed. The KtECM adopts an iterative method, in which the iterative elastic modulus sequences of the main load-carrying elements in a structure satisfy the condition of contraction mapping. At the same time, an adjustable factor λ. related with the stress concentration factor (Kt) of structures is used to define a rational nominal stress. Limit loads of several complex structures are calculated by different methods. It reaches the conclusion that the KtECM can provide a good estimation of plastic limit loads for complex structures and preserves the advantages of simplicity, high efficiency and convenience for engineering applications. The adjustable factor λ. can make a balance between computational precision and time.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2007年第5期187-193,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(50605039)
关键词 复杂结构 极限分析 修正弹性补偿法 Banach不动点原理 Complex structures Limit analysis Modified elastic compensation method The fixed point theorem in Banach space
  • 相关文献

参考文献14

  • 1SESHADRI R,MARRIOTT D L.On relating the reference stress,limit load and the ASME stress classification concepts[J].Int.J.Pres.Ves.and Piping,1993,56:387-408.
  • 2KROENKE W C.Classification of finite element stresses according to ASME section Ⅲ stresses categories[J].ASME Pressure Vessels and PiPing,1974,34:74-83.
  • 3王勖成,童瑞成.确定结构极限载荷的有限元简化算法[J].机械强度,1997,19(2):5-10. 被引量:5
  • 4MACKENZIE D,BOYLE J T.A method of estimating limit loads by iterative elastic analysis Ⅰ-Simple examples[J].Int.J.Pres.Ves.and Piping,1993,53:77-95.
  • 5MACKENZIE D,BOYLE J T,HAMILTON R.The elastic compensation method for limit and shakedown analysis:a review[J].Journal of Strain Analysis,2000,35(3):171-187.
  • 6MACKENZIE D,SHI J,BOYLE J T.Finite element modeling for limit analysis by elastic compensation method[J].Comput.Struct.,1994,51(4):403-410.
  • 7MACKENZIE D,BOYLE J T,NADARAJAH C,et al.Simple hounds on limit loads by elastic finite element analysis[J].Trans.ASME J.Pres.Ves.Tech.,1993,115(1):27-31.
  • 8HAMILTON R,MACKENZIE D,SHI J,et al.Simplified lower bound limit analysis of pressurized cylinder/cylinder intersections using generalized yield criteria[J].Int.J.Pres.Ves.andPiping,1996,67(2):219-226.
  • 9PONTER A R S,CARTER K F.Limit state solutions based on linear elastic solutions with spatially varying elastic modulus[J].Comput.Meth.Appl.Mechanics Engng.,1997,140:237-258.
  • 10YANG P,LIU Y,OHTAKE Y,et al.Limit analysis based on a modified elastic compensation method for nozzle-to-cylinder junctions[J].Int.J.Pres.Ves.Piping,2005,82:770-776.

二级参考文献6

  • 1王有先(译).锅炉和管道钢材及强度计算[M].北京:劳动人事出版社,1983..
  • 2张德姜 等.石油化工装置工艺管道安装设计手册(第1篇),设计与计算[M].北京:中国石化出版社,1992.6.
  • 3-.GB/T9222-88水管锅炉受压元件强度计算[M].北京:国家技术监督局,1989..
  • 4S.S.吉尔.压力容器及其部件的应力分析[M].北京:原子能出版社,1975..
  • 5王勖成,Comp Struct,1995年,55页
  • 6梅其志,朱卫兵,王昱,张同达,王乃良.受内压焊制三通管件强度的研究[J].压力容器,1992,9(6):20-31. 被引量:6

共引文献9

同被引文献68

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部