期刊文献+

基于小波神经网络的次级通路建模研究

A Study on Secondary Path Modeling Based on the Wavelet Neural Networks
下载PDF
导出
摘要 在有源噪声控制系统实现的过程中,次级通路建模精度对有源控制算法实现、系统的稳定性及降噪量都有重要影响。提出了一种基于小波神经网络的次级通路建模方法,研究了其结构化设计方法和相应的学习算法,并通过计算机仿真验证了其有效性。 In the implementation of active noise control, it is very important for accurate secondary paths modeling to keep the stability of the control system. A new method of the secondary paths modeling is presented, and its structural design method and corresponding learning algorithm are explored. Finally, its validity is proved by the computer simulation.
出处 《电声技术》 2007年第5期63-65,共3页 Audio Engineering
关键词 次级通路 通路建模 有源噪声控制 secondary path path modeling active noise control
  • 相关文献

参考文献5

  • 1ELLIOTT S.Signal Processing for Active Control[M].London:Academic Press,2001.
  • 2PATI Y C,KRISHNAPRASED P S.Analysis and synthesis of feedforward neural networks using discrets affine wavelet transformations[J].IEEE Trans.on Neural Networks,1993,4(1):73-85.
  • 3张俊艳,魏连伟,韩文秀,邵景力,崔亚丽,张建立.基于RBF神经网络的水文地质参数识别[J].中国工程科学,2004,6(8):74-78. 被引量:7
  • 4DAUBECHIES I.The transform,time-frequency localization and signal analysis[J].IEEE Trans.on Information Theory,1990,36(5):961-1005.
  • 5杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..

二级参考文献8

  • 1刘国东,丁晶,张翔.应用人工神经网络求算含水层参数[J].工程勘察,1997,25(1):25-28. 被引量:16
  • 2Zio E. Approaching the inverse problem of parameter estimation in groundwater models of artificial neural networks[J]. Progress in Nuclear Energy, 1997, 31 (3): 301~315
  • 3Balkehair K S. Aquifer parameters determination for large diameter wells using neural network approach [J]. Journal of Hydrology, 2002, 265: 118~128
  • 4Giacobbo F, Marseguerra M, Zio E. Solving the inverse problem of paramete r estimation by genetic algorithms: the case of a groundwater contaminant transport model [J]. Analysis of Nuclear Energy, 2002, 29: 967~981
  • 5Prasad K L, Rastogi A K. Estimating net aquifer recharge and zonal hydraul ic conductivity values for Mahi Right Bank Canal project area, India by genetic al gorithm [J]. Jounal of Hydrology, 2001, 243: 149~161
  • 6Moody J, Darken C. Fast learning in networks of locally tuned processing [J]. Neural Computation, 1989, (1): 281~289
  • 7Neuman S P. Calibration of distributed parameter groundwater flow models viewed as a Multiple-objective decision process under uncertainty [J]. Water Resources Research, 1973, 9(4): 1006~1021
  • 8邵景力,魏加华,崔亚莉,陈占成.用遗传算法求解地下水资源管理模型[J].地球科学(中国地质大学学报),1998,23(5):532-536. 被引量:21

共引文献171

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部