期刊文献+

基于颜色特征的加工番茄叶片氮素评价初步研究 被引量:9

A Primary Study on N Evaluating of Processing Tomato Leaves Based on Color Features
下载PDF
导出
摘要 利用数码相机获取加工番茄地上部分彩色图像,通过图像处理软件提取RGB及其组合的颜色特征值,同时与氮素指标叶片叶绿素含量、SPAD值、叶片含氮量及单株吸氮量作回归分析,根据统计性检验,有相当数量的颜色特征与4个氮素指标呈较高的相关性,相关系数达到r=0.7以上。综合筛选出的颜色特征指标,结合地面覆盖度与氮素营养指标建立以叶片含氮量为应变量的估算模型。经模型校验,其预测值与实测值在n=15,P<0.01水平上达r=0.8以上的极显著相关。因此,可依据颜色特征参数通过建立相应的统计模型进行加工番茄叶片氮素含量的评价,进而为加工番茄氮素营养诊断提供依据。 This research introduced CCD digital camera as a sensor through which processing tomato plant color images were captured. Then, tomato canopy and background pixel was identified by image processing software. Background noise was eliminated such as hotspot and shadow and soil etc. Color characteristics of leaf images such as R G/3 were recorded with the image processing software. Meanwhile, leaves' chlorophyll contents and SPAD value and leaves" nitrogen concentration and N absorbed content was measured in Lab. Canopy parameters and color information were paired for regression analysis. Empirical statistical showed that a significant high coefficient between the color characteristics and the four nitrogen nutrition parameters. The correlative coefficient was higher than 0.7. Furthermore, a statistic correlation models were developed between color characteristic parameters and PGCV% and nitrogen nutrition parameters. Validation test showed the correlative coefficient between the estimated value and testing value was over 0.8. Therefore, the color characteristic parameters can be used to establish statistic model and evaluate processing tomato leaves' nitrogen nutrition states, and for the diagnosis of N status of processing tomato.
出处 《西北农业学报》 CAS CSCD 北大核心 2007年第3期175-179,共5页 Acta Agriculturae Boreali-occidentalis Sinica
基金 新疆生产建设兵团重点科技攻关项目(04GG03 2004-2006)
关键词 颜色特征参数 加工番茄 氮素 统计模型 Color characteristics parameters Processing tomato Nitrogen Statistic correlation model
  • 相关文献

参考文献14

  • 1穗波信雄等.图像处理在植物生长信息提取中的应用[R]:农业机械学会关西支部研究会资料(日).,1992.63~46.
  • 2王克如,李少昆,王崇桃,杨蕾,谢瑞芝,高世菊,柏军华.用机器视觉技术获取棉花叶片叶绿素浓度[J].作物学报,2006,32(1):34-40. 被引量:52
  • 3Yutaka Sasaloi,Tsuguo Okamoto,Automatic diagnosis between healthy and diseased leaf[J].Japanese Society of Agricultural Machinery,1999,61 (2):119 ~ 126.
  • 4吴雪梅,毛罕平.计算机视觉描述缺素番茄叶片颜色变化的研究[J].农机化研究,2004,26(5):212-214. 被引量:8
  • 5张伟,毛罕平,李萍萍,夏志军.基于计算机图像处理技术的作物缺素判别的研究[J].计算机应用与软件,2004,21(2):50-51. 被引量:14
  • 6徐贵力,毛罕平,李萍萍.缺素叶片彩色图像颜色特征提取的研究[J].农业工程学报,2002,18(4):150-154. 被引量:73
  • 7Casady W W,Singh N,Costello T A.Machine Vision for Measurement of Rice Canopy Dimensions[J].Transactions of the ASAE,1996,39(5):1891~1898.
  • 8Blackmer T M,Schepers J S,Varvel G E,et al.Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies[J].Agronomy Journal,1996,88:1-5.MI49085~9659,USA.
  • 9Adamsen F J,Paul J,Pinter Jr,et al.Measuring wheat senescence with a digital camera[J].Crop Sci.,1999,39:719~724.
  • 10Klassen S P,Ritchie G,Frantz J M.Real-time imaging of ground cover:Relationships with radiation capture,canopy photosynthesis,and daily growth rate[J].Crop Science Society of America Special Publication on Digital Technologies.(In Press).

二级参考文献51

  • 1李存军,王纪华,刘良云,王人潮.基于数字照片特征的小麦覆盖度自动提取研究[J].浙江大学学报(农业与生命科学版),2004,30(6):650-656. 被引量:53
  • 2王鹄生.花卉蔬菜无土栽培技术[M].长沙:湖南科学技术出版社,1997..
  • 3Yutaka Sasaki Tsuguo Okamoto.-[J].农业机械学会志,1999,61(2):119-126.
  • 4陈天洲.医学图像处理与可视化技术研究[M].杭州:浙江大学,1998,7.5-7.
  • 5徐贵力.几种统计算法和相关系数法在彩色图像颜色特征提取的应用[J].计算机工程,2002,(2):2-4.
  • 6穗波信雄.画像人力にょる,体情报[J].农业机械学会关西支部志第6回支部研究会资料,1989,10:1-12.
  • 7Chapple E W, Kim M S, McMurtrey J E. Ratio analysis of reflectance spectra (RARS): AN algorithm for the remote estimation of the concentration of chlorophyll b, and carotenoids in soybean leaves. Remote Sens Environ, 1992,39 : 239-247.
  • 8Blackmer T M, Schepers J S, Varvel G E. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agro J, 1994, 86:934- 938.
  • 9金震宇,田庆久,惠凤鸣.Study of the relationship between rice chlorophyll concentration and rice reflectance.遥感技术应用,2003,18(3):134~137(in Chinese with English abstract).
  • 10Tarbell K A, Reid F. A computer vision system for characterizing corn growth and development. Trans ASAE, 1991,34(5) :2245-2255.

共引文献133

同被引文献176

引证文献9

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部