期刊文献+

AMSR-E亮温数据与MODIS陆表分类产品结合反演全球陆表温度 被引量:16

Global Land Surface Temperature Retrieval with AMSR-E Brightness Temperature and MODIS Land Cover Type Products
下载PDF
导出
摘要 AMSR—E被动微波传感器获取的亮温数据与MODIS陆表分类产品(MOD12)相结合,将全球陆表分为16类,并假设每种类型的地表在各个被动微波通道具有较一致的发射率,在此基础上针对每种陆表类型分别建立了陆表温度反演算法。在算法的建立过程中,为了避免混合像元以及冻土、积雪发射率不确定性带来的影响,仅对单一地表类型占90%以上以及MODIS陆表温度产品高于273K的被动微波像元进行回归。同时,考虑到降雨对回归结果的影响,在数据选择中加入了降雨判识,在被动微波亮温数据中除去了降雨像元。利用上述算法,用2004年1~10月的全球部分地区AMSR—E数据在MODIS陆表分类产品的基础上对每种地表类型分别进行了陆表温度反演,并与MODIS陆表温度产品进行对比,结果显示相关性较好,均方根误差为2~4K。 AMSR-E brightness temperature data and MODIS land cover type data are combined to retrieval land surface temperature (LST). Using the MODIS data, we classified the global land surface into 16 types, and make assumption that in each land surface type, the emissivity of each channel is constant separately. Based on this assumption and the land surface types, we build land surface retrieval algorithms for each land surface types. Before the algorithms were built, we chose the pixels that with above 90% single land type area and pixels that the MODIS land surface temperature exceed 273 K. This is because the emissivity is dubious in snow cover, ice cover, and mixed-pixels. Coequally, considering the precipitation effect, we winkled the rainfall pixel from our dataset. Finally, we employed the algorithms to retrieval global land surface temperature of Jan to Oct, 2004. Compared with the MODIS land surface temperature product, the result is fine, with RMSE of 2-4 K.
作者 武胜利 杨虎
出处 《遥感技术与应用》 CSCD 2007年第2期234-237,共4页 Remote Sensing Technology and Application
关键词 AMSR—E 亮度温度 陆表温度 陆表分类 AMSR-E, Brightness temperature, Land surface temperature, Land surface type classification
  • 相关文献

参考文献8

  • 1Qin Z,Dall'Olmo,Giorgio,et al.Derivation of Split Window Algorithm and Its Sensitivity Analysis for Retrieving Land Surface Temperature from NOAA-advanced Very High Resolution Radiometer Data[J].Journal of Geophysical Research,2001,106:22655-22670.
  • 2Basist A,Grody N,Peterson T,et al.Using the Special Sensor Microwave/Imager to Monitor Land Surface Temperatures,Wetness,and Snow Cover[J].Journal of Applied Meteorology,1998,37:888-911.
  • 3Gota K,Royer A.Combination of Passive Microwave and Thermal Infrared for the Retrieval and Analysis of Microwave Emissivities and Temperature[A].In IGARSS 2002[C].Toronto,2002.
  • 4McFarland M,Miller R,Neale C.Land Surface Temperature Derived from the SSM/I Passive Microwavebrightness Temperatures[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28:839-845.
  • 5Surdyk S.Using Microwave Brightness Temperature to Detect Shortterm Surface Air Temperature Changes in Antarctica:An Analytical Approach[J].Remote Sensing of Enivorment,2002,80:256-271.
  • 6Weng F,Grody N C.Physical Retrieval of Land Surface Temperature Using the Spectral Sensor Microwave Imager[J].Journal of Geophysical Research,1998,103:8839-8848.
  • 7Neale C,McFarland M,Chang K.Land-Surface-Type Classification Using Microwave Brightness Temperatures from the Special Sensor Microwave/Imager[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28:829-838.
  • 8Njoku E G,Li L.Retrieval of Land Surface Parameters Using Passive Microwave Measurements at 6~18 GHz[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37:79-93.

同被引文献134

引证文献16

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部