期刊文献+

组织进化粒子群数值优化算法 被引量:6

Organizational Evolutionary Particle Swarm Optimization for Numerical Optimization
原文传递
导出
摘要 为充分利用粒子的通讯、响应、协作和自学习能力等特性,克服算法早熟收敛,本文提出一种组织进化粒子群算法.该算法将进化操作直接作用在组织上,通过组织间的相互竞争、协作,最终达到全局优化的目的,且证明算法的全局收敛性.实验中,用12个无约束标准测试函数对算法性能进行测试,与其它算法进行比较,并对算法中的参数进行分析.结果表明,本文算法无论在解的质量上还是在计算复杂度上都明显优于其它算法.参数分析表明该算法具有性能稳定、成功率高、对参数不敏感等优良特性. An organizational evolutionary particle swarm optimization (OEPSO) is presented. The evolutional operations are acted on organizations directly in the algorithm. The global convergence is gained through competition and cooperation among the organizations, and the mathematic convergence is given. In the experiments, OEPSO is tested on 12 unconstrained benchmark problems, and compared with FEP and three algorithms based on the PSO . In addition , the effects of parameters in the algorithm are analyzed. The results indicate that OEPSO performs better than other algorithms both in solution quality and computational complexity. The analyses of parameters show OEPSO has stable performance and high success ratio, and it is insensitive to parameters.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2007年第2期145-153,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目No.60133010 国家自然科学基金项目No.60372045 国家863计划项目(No.2002AA135080) 国家973计划项目(No.2001CB309403)
关键词 粒子群算法 组织 进化计算 无约束优化 Particle Swarm Optimization, Organization, Evolutionary Computation, Unconstrained Optimization
  • 相关文献

参考文献11

  • 1Kennedy J, Eberhart R C. Particle Swarm Optimization//Proc of the IEEE International Conference on Neural Networks. Perth, Australia, 1995:1942-1948
  • 2Shi Y H, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization// Proc of the Congress on Evolutionary Computation. Seoul, Korea, 2001:79-85
  • 3van den Bergh F, Engelbrecht A P. A Cooperative Approach to Particle Swarm Optimization. IEEE Trans on Evolutionary Computation, 2004, 8(3): 225-239
  • 4Kennedy J, Mendes R. Population Structure and Particle Swarm Performance // Proc of the IEEE Congress on Evolutionary Computation. Honolulu, USA, 2002:1671-1676
  • 5Parsopoulos K E, Vrahatis M N. On the Computation of All Global Minimizers through Particle Swarm Optimization. IEEE Trans on Evolutionary Computation, 2004, 8(3): 211-224
  • 6Ratnaweera A, Halgamuge S K, Watson H C. Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients. IEEE Trans on Evolutionary Computation, 2004, 8(3): 240-255
  • 7Yao Xin, Liu Yong, Lin Guangming. Evolutionary Programming Made Faster. IEEE Trans on Evolutionary Computation, 1999, 3(2): 82-102
  • 8Kennedy J. The Particle Swarm: Social Adaptation of Knowledge//Proc of the IEEE International Conference on Evolutionary Computation. Indianapolis, USA, 1997:303-308
  • 9Coase R H. The Firm, The Market and the Law. Chicago, USA: University of Chicago Press, 1988
  • 10Wilcox J R. Organizational Learning within a Learning Classifier System. MS Dissertation. Illinois, USA: University of Illinois. Department of Computer Science, 1995

二级参考文献12

  • 1Leung Y.W., Wang Y.. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(1): 41~53
  • 2Kazarlis S.A.,Papadakis S.E.,Theocharis J.B.,Petridis V..Microgenetic algorithms as generalized hill-climbing operators for GA optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(3): 204~217
  • 3Runarsson T.P., Yao X.. Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284~294
  • 4Wilcox J.R.. Organizational learning within a learning classifier system[Master dissertation]. University of Illinois, Illinois, USA, 1995
  • 5Coase R.H.. The Firm, the Market, and the Law. Chicago: University of Chicago Press, 1988
  • 6Rudolph G.. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, Special Issue on Evolutional Computing, 1994, 5(1): 96~101
  • 7Dinabandhu B., Murthy C.A., Sankar K.P.. Genetic algorithm with elitist model and its convergence. International Journal of Pattern Recognition and Artificial Intelligence, 1996, 10(6): 731~747
  • 8Iosifescu M.. Finite Markov Processes and Their Applications. Wiley: Chichester, 1980
  • 9王磊,潘进,焦李成.免疫规划[J].计算机学报,2000,23(8):806-812. 被引量:63
  • 10张铃,张钹.佳点集遗传算法[J].计算机学报,2001,24(9):917-922. 被引量:165

共引文献18

同被引文献65

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部