期刊文献+

一种基于相位互相关平方和的图像配准算法 被引量:1

Image Registration Based on the Quadratic Sum of Phase Correlation
原文传递
导出
摘要 提出一种存在大刚性变换的两图像配准算法.算法直接构造一个关于旋转角的表示配准程度的函数,该函数来自于两图像的 Radon 变换之间的相位互相关的平方和,取最大的坐标即为对旋转角的估计.实验比较该算法和基于双谱的算法,结果表明本文算法在抗杂波、噪声方面效果更好,可以鲁棒、精确地估计两图像存在的任意旋转及中等程度的平移. A method for two-image registration with rigid transformation is proposed. It directly constructs an evaluation function of rotations, which comes from the quadratic sum of the one dimensional phase correlation between the Randon transforms in the two aligned images. The coordinate of the maximum value of this function yields the estimate for rotation angle. Experimental results show that the proposed method outperforms phase-only bispectrum based method, and it can estimate both arbitrary rotations and medium translations robustly and accurately.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2007年第2期162-166,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金No.60404011 国家自然科学基金No.60372085
关键词 相位互相关 图像配准 RADON变换 Phase Correlation, Image Registration, Randon Transformation
  • 相关文献

参考文献7

  • 1Casasent D, Psaltis D. Position, Rotation, and Scale Invariant Optical Correlation. Applied Optics, 1976, 15(7): 1795-1799
  • 2Reddy B S, Chatterji B M. An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration. IEEE Trans on Image Processing, 1996, 5(8) : 1266-1271
  • 3Heikkila J. Image Scale and Rotation from the Phase-Only Bispectrum// Proe of the International Conference on Image Processing. Singapore, Singapore, 2004, Ⅲ: 1783-1786
  • 4Gluckman J. Gradient Field Distributions for the Registration of Images// Proc of the International Conference on Image Processing. Barcelona, Spain, 2003,Ⅱ:691-694
  • 5Keller Y, Averbuch A, Israeli M. Pseudopolar-Based Estimation of Large Translations, Rotations, and Scalings in Images. IEEE Trans on Image Processing, 2005, 14(1) : 12-22
  • 6Kuglin C D, Hines D C. The Phase Correlation Image Alignment Method// Proc of the International Conference on Cybernetics and Society. New York, USA, 1975:163-165
  • 7Averbuch A, Coifman R R, Donoho D L, et al. Fast Slant Stack: a Notion of Radon Transform for Data in a Cartesian Grid Which is Rapidly Computible, Algebraically Exact, Geometrically Faithful, and Invertible. Technical Report, 2001-11, Stanford, USA: Stanford University. Department of Statistics, 2001

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部