期刊文献+

基于PS—EM算法和BP神经网络的影响图模型选择 被引量:2

A Model Selection Method of Influence Diagrams Based on PS-EM Algorithm and BP Neural Network
原文传递
导出
摘要 影响图模型选择中存在数据依赖性、计算复杂性和非概率关系问题.通过对影响图结构进行分解,提出PS-EM 算法对影响图的概率结构部分进行模型选择.给出一种 BP 神经网络,通过对局部效用函数的学习实现效用结构部分的模型选择,并引入权重阈值来避免过拟合.PS-EM 算法是在 SEM 算法中引入一种融合先验知识的MDL 评分标准来降低传统 MDL 评分对数据的依赖性,并通过将参数学习和结构评分分开计算提高计算效率.算法比较的结果显示 PS-EM 比标准 SEM 的时间性能好、对数据依赖性小,且效用部分的结构选择易于实现. In the model selection of influence diagrams(IDs), the problems of the data dependency, the computation complexity and non-probability relation are discussed. Based on the structure decomposition of IDs , a PS - EM algorithm is presented . A BP Neural Network is introduced by learning local utility function of each utility node, and the overfitting is avoided by inducing the threshold of weights. To reduce the data dependency, a new MDL scoring is presented which includes the prior knowledge of network structures. Based on SEM algorithm, PS-EM algorithm induces the new MDL scoring, and separates parameters learning from structures scoring to improve the computation efficiency. Compared with SEM algorithm, the performances of both the computation complexity and the data dependency of PS-EM algorithm are improved, and the model selection of the utility part is easy to achieve.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2007年第2期185-190,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60575023) 教育部博士点基金(No.20050359012)
关键词 影响图(IDs) 结构期望最大值(SEM)算法 后向神经网络 最小描述长度(MDL)评分 Influence Diagrams (IDs), Structural Expectation Maximization (SEM) Algorithm,Back Propagation (BP) Neural Network, Minimum Description Length (MDL) Scoring
  • 相关文献

参考文献16

  • 1Howard R A, Matheson J E. Influence Diagrams// Howard R A, Matheson J E, eds. Readings on the Principles and Applications of Decision Analysis. Menlo Park, USA:Strategic Decision Group, 1984,Ⅱ:719-792
  • 2Charnes J, Shenoy P. Multistage Monte Carlo Method for Solving Influence Diagrams. Management Science, 2004, 50 (3) .. 405-418
  • 3Diehl M, Haimes Y Y. Influence Diagrams with Multiple Objectives and Tradeoff Analysis. IEEE Trans on Systems, Man, and Cybernetics, 2004, 34(3): 293-304
  • 4Pettersson J, Wahde M. Application of the Utility Function Method for Behavioral Organization in a Locomotion Task. IEEE Trans on Evolutionary Computation, 2005, 9(5) : 506-521
  • 5Nielseni T D, Jensen F V. Learning a Decision Maker's Utility Function from (Possibly) Inconsistent Behavior. Artificial Intelligence, 2004, 160(1/2):53-78
  • 6Heckerman D, Geiger D. Learning Bayesian Networks:The Combination of Knowledge and Statistical Data. Machine Learning, 1995, 20(3):197-243
  • 7Chajewska U, Koller D. Utilities as Random Variables: Density Estimation and Structure Discovery// Proc of the 16th Annual Conference on Uncertainty in Artificial Intelligence. Stanford, USA, 2000.. 63-71
  • 8王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 9Ji Junzhong, Yan Jing, Liu Chunnian, etal. An Improved Bayesian Networks Learning Algorithm Based on Independence Test and MDL Scoring // Proc of the International Conference on Active Media Technology. Takamatsu, Japan, 2005 :315-320
  • 10Dodge Y, Zoppe A. Adjusting the EM Algorithm for Design of Experiments with Missing Data//Proc of the 26th International Conference on Information Technology Interfaces. Covtat, Croatia, 2004, Ⅰ: 9-12

二级参考文献5

  • 1刘大有 王飞 等.Bayesian网学习.知识科学与知识工程研讨会论文集[M].海口,1999..
  • 2阎平凡,人工神经网络与模拟进化计算,2000年
  • 3Man Leung Wong,IEEE Trans Pattern Anal Mach Intell,1999年,21卷,2期,175页
  • 4刘大有,知识科学与知识工程研讨会论文集,1999年
  • 5刘大有,王飞,卢奕南,薛万欣,王松昕.基于遗传算法的Bayesian网结构学习研究[J].计算机研究与发展,2001,38(8):916-922. 被引量:43

共引文献98

同被引文献32

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部