期刊文献+

基于免疫机理的多机器人未知环境完全探测研究 被引量:3

An Immune-Based Algorithm for Multi-Robot Complete Exploration in an Unknown Environment
原文传递
导出
摘要 利用多个机器人对未知环境进行在线完全探测.引用免疫系统的工作机理,系统是完全自主分布式的,对机器人的起始位置、运动队形不做任何要求.将机器人感知到的局部环境信息看作抗原,机器人看成 B 细胞,机器人下一步的探测目标点作为抗体.根据抗原信息,机器人个体进行自主作业.利用抗体-抗体的作用力,机器人之间实现协作.结合机器人的自主性和协作性,系统在线对未知环境进行探测.算法还利用记忆库记录边界点来实现完全探测,省去记录大量环境地图信息.仿真实验表明算法能有效实现完全探测,且对个别机器人失效和通讯丢失有较好的鲁棒性. A complete exploration algorithm using multiple robots in an unknown environment is proposed. Based on the principle of the immune system, the system is fully decentralized. It has no requirement for the starting,points and the formation of the robots. Each local environment condition sensed by the robots is considered as antigen while robot is regarded as B-cell and the next exploration target as antibody respectively . Each robot works independently according to the antigen information . The coordination of the robots can be realized by utilizing the interactions among antibodies . The system carries out the exploration of unknown environment with the combination of robots' independence and coordination . Instead of recording information about environment map, the complete exploration is realized using the frontier in the memory library. Simulation results validate the algorithm is efficient, complete and robust to the fail of robot and the lost of the communication.
作者 高云园 韦巍
出处 《模式识别与人工智能》 EI CSCD 北大核心 2007年第2期191-197,共7页 Pattern Recognition and Artificial Intelligence
基金 浙江省自然科学基金人才(No.R105341)
关键词 生物免疫系统 多机器人 完全探测 边界点 Biological Immune System, Multi-Robot, Complete Exploration, Frontier
  • 相关文献

参考文献15

  • 1Thrun S. Learning Metric-Topological Maps for Indoor Mobile Robot Navigation. Artificial Intelligence, 1998, 99(1):21-71
  • 2Spero D J, Jarvis R A. Path Planning for a Mobile Robot in a Rough Terrain Environment // Proc of the 3rd International Workshop on Robot Motion and Control. Bukowy Dworek, Poland, 2002:417-422
  • 3Pack D J, Mullins B E. Toward Finding an Universal Search Algorithm for Swarm Robots // Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Las VEgas, USA, 2003,Ⅱ: 1945-1950
  • 4Simmon R, Apfelbaum D, Burgard W, et al. Coordination for Multi-Robot Exploration and Mapping//Proc of the AAAI National Conference on Artificial Intelligence. Austin, USA, 2000:852-858
  • 5Rekleitis I, Lee-Shue V, Ai P N, et al. Limited Communication, Multi-Robot Team Based Coverage // ProC of the IEEE International Conference on Robotics and Automation. New Or leans, USA, 2004, Ⅳ: 3462-3467
  • 6Tao Weimin, How K Y. A Decentralized Approach for Cooperative Sweeping by Multiple Mobile Robots // Proc of the IEEE/RSJ International Conference on Intelligent Robots and SysteMs. Victoria, Canada, 1998,Ⅰ: 380-385
  • 7Yamauchi B. Frontier-Based Exploration Using Multiple Robots // ProC of the 2nd International Conference on Autonomous Agents. Minneapolis, USA, 1998:47-53
  • 8Jerne N K. Idiotypic Networks and Other Preconceived Ideas. Immunological Review, 1984, 79:5-24
  • 9Farmer J D, Parkard N H, Perelson A S. The Immune System, Adaptation, and Machine Learning. Physica, 1986, 22(1): 187- 204
  • 10Ishiguro A, Wantanabe Y, Kondo T, et al. A Robot with a Decentralized Consensus-Making Mechanism Based on the Immune System // Proc of the 3rd International Symposium on Autonomous Decentralized Systems. Berlin, Germany, 1997: 231-237

同被引文献50

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部