期刊文献+

重力场和电解质浓度对胶体凝聚体分形结构的影响 被引量:9

Effect of Gravity and Electrolyte Concentration on the Fractal Structure of Colloidal Aggregates
下载PDF
导出
摘要 运用李航等提出的新方法,克服了DLVO理论中无法理论计算不同电解质浓度下颗粒的表面电位这一困难,从而可以直接计算出不同电解质浓度下胶体颗粒间的位能.同时,还运用胶体颗粒动能的玻耳兹曼分布原理和蒙特卡罗方法来模拟胶体的运动,并采用非弹性碰撞理论解决了碰撞后凝聚的有效概率问题.在改进DDA模型的基础上,成功地建立了以往的模拟中未能建立的重力场中电解质浓度与碰撞凝聚概率间的联系,结果发现,(1)重力场作用下的凝聚体分形维数随电解质浓度变化的曲线完全不同于无重力条件下的曲线.无重力作用下,凝聚结构体分形维数随电解质浓度的变化比较缓慢,曲线呈“L”形;而重力作用下的分形维数则呈明显的“S”形曲线.(2)在重力条件下,慢凝聚包括两个区域,对电解质浓度不敏感区域和敏感区域.在敏感区域存在一个电解质浓度的拐点.(3)无重力条件下,不同大小的胶体颗粒在快凝聚时的分形维数都是在1.86±0.01.当电解质浓度降低,凝聚速率变慢,分形维数增加,最大达到2.01±0.02,但不会形成重力条件下的分形维数接近3的结构体. The new method developed by Li et al. was used to calculate the energy between two colloidal particles, which could break through the limit that the surface potential to be taken as a constant as electrolyte concentration changes in the classic DLVO theory. Also in this research, both the Boltzmann theory of kinetic energy of colloidal particles and Monte Carlo method were used to simulate the movement of colloidal particles, and the inelastic collision theory was used to solve the problem of effective collision probability. By improving the DDA model, the relationship between the cohesion efficiency and the electrolyte concentration in gravity field was established successfully. The results showed that: (1) the curves of the fractal dimension change with electrolyte concentration as gravity field presence were quite different from that as the gravity field absence. The curves were "L"-shaped as the gravity field absence; however, as the gravity field presence, the curves were "S"-shaped. (2) As gravity field presence, the slow aggregating process can be divided into two sections: the sensitive and non-sensitive sections to electrolyte concentration. In the sensitive section, an inflexion of electrolyte concentration was found. (3) As gravity field absence, the fractal dimension of aggregates was 1.86±0.01 for different size of colloidal particles as the aggregating process was fast under a higher electrolyte concentration condition. Comparatively, for a slow aggregating process of low electrolyte concentration, the fractal dimension increased to 2.01±0.02. However, under the same low electrolyte concentration, the fractal dimension of aggregates approached 3 as the gravity field presence.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2007年第5期688-694,共7页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(40371061) 重庆市教委科学技术研究项目(KJ050205)资助
关键词 胶体颗粒 凝聚 计算机模拟 分形 Colloidal particle Computer simulation Aggregation Fractal
  • 相关文献

参考文献24

  • 1周祖康 马季铭(译).胶体与表面化学原理[M].北京大学出版社,1986.504-505.
  • 2Witten, T. A.;Sander, L. M. Phys. Rev. Lentt., 1981, 47:1400.
  • 3(a)Meakin, P. Phys. Rev. Lett., 1983, 51:1119.
  • 4(b) Kolb, M, R.;Botet, R.;Jullien, R. Phys. Rev. Lett., 1983, 51: 1123.
  • 5Jullien, R. Phys. Rev. Lett., 1985, 55:1697.
  • 6Vicsek, T. Fractal growth phenomena. Singapore: World Scientific Publishing Co Pte Ltd, 1992:215-257.
  • 7Agust'm, E. G.;Guillermo, R. S. J. Colloid Interface Sci., 1996, 182:254.
  • 8Agust'm, E. G.;Francisco, M. L.;Arturo, M. J.;Roque, H. A. J. Colloid Interface Sci., 2002, 246:227.
  • 9Jensen, P.;Barabasi, A.;Larralde, H.;Havlin, S.;Stanley, H. E. Phys. Rev. E, 1994, 62:868.
  • 10Jensen, P.;Barabasi, A.;Larralde, H.;Havlin, S.;Stanley, H. E. Phys. Rev. B, 1994, 50:15316.

二级参考文献12

  • 1熊毅 陈家坊.土壤胶体,第三册[M].北京:科学出版社,1990.31.
  • 2熊毅.土壤胶体,第二册[M].北京:科学出版社,1985.393.
  • 3Kostoglou M, Konstandopolulos A G. Evolution of aggregate size and fractal dimension during Brownian coagulation [J]. J Aerosol Sci, 2001, 32: 1399-1460.
  • 4Rzepiela A A, Opheusden J H, Vliet T. Brownian dynamics simulation of aggregation kinetics of hard spheres with flexible bonds [J]. J Colloid Interface Sci, 2001, 244: 43-50.
  • 5Brasil A M, Farias T L, Carvalho M G. Numerical characterization of the morphology of aggregated particles [J]. Aerosol Sci, 2001, 32: 489-508.
  • 6Gonzalez A E, Lachhab M, Blaisten-Barojas E. On the concentration dependence of the cluster fractal dimension in colloidal aggregation [J]. J Sol-Gel Scl Tech, 1999, 15: 119-127.
  • 7Meakin P. A historical introduction to computer models for fractal aggregates [J], J Sol-Gel Sci Tech, 1999, 15: 97-117.
  • 8Uhlmann D R, Teowee G, Boulton. The future of sol-gel science and technology [J]. J Sol-Gel Sci Tech, 1997, 8: 1087-1091.
  • 9Brasil A M, Farias T L, Carvalho M G. A recipe for image characterization of fractal-like aggregates [J]. J Aerosol Scl, 1999, 30(10): 1379-1389.
  • 10熊毅,土壤胶体.3,1990年,31页

共引文献25

同被引文献134

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部