期刊文献+

短语音说话人识别新方法的研究 被引量:10

Novel Speaker Recognition Method Based on Little Speech Data
下载PDF
导出
摘要 提出了一种较短训练语音的说话人识别新方法。利用模糊核聚类算法设计矢量量化器,对说话人的语音特征进行训练。模糊核矢量量化器将原始空间通过非线性映射到高维特征空间,在高维特征空间中对说话人的训练语音特征进行模糊聚类分析,将得到的每个类中心作为说话人的语音模型。识别时将识别矢量映射到高维空间进行匹配决策。由于核方法的引入,使得原来没有显现的特征突现出来,增加了说话人之间的可区分性。实验表明,该方法对于较短的训练语音,其识别效果优于高斯混合模型和模糊矢量量化。 A new method of speaker recognition with little training data was proposed, which used fuzzy kernel clustering to design vector quantization, and used the fuzzy-kernel vector quantization to train the speakers' models. By non-linear mapping, the data in original space were mapped to a high-dimensional feature space, which used the fuzzy clustering to the speakers' training features in the feature space, and formed the speaker's model with the clustering centers. The recognition was performed in the high-dimensional feature space. Because of the kernel mapping, the features inherent in the speech explored, which improved the discriminations of the different speakers. Experimental results show that this method can obtain better results than the Gaussian mixture model (GMM) and Fuzzy vector quantization method in the case of the little training data.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第10期2272-2275,共4页 Journal of System Simulation
关键词 核方法 模糊核矢量量化 说话人识别 短语音 kernel-based method fuzzy kernel vector quantization speaker recognition little training data
  • 相关文献

参考文献10

  • 1Matsui T,Furui S.Comparison of Text-independent Speaker Recognition Methods Using VQ-distortion and Discrete/Continuous HMMs[C]// Proc.IEEE Internat.Conf.on Acoust.Speech,Signal Processing,San Francisco:IEEE.1991.
  • 2Karayiannis N B,Pin-I Pai.Fuzzy Vector Quantization Algorithms[C]// Fuzzy Systems,IEEE World Congress on Computational Intelligence,Orlando,Florida:IEEE.1994.
  • 3Tran D,Wagner M,Van Le T.A Proposed Decision Rule for Speaker Recognition Based on Fuzzy C-Means Clustering[C]//5th International Conference on Spoken Language Processing,ICSLP'98.Sydney Australia:Australian Speech Science and Technology Association,Incorporated (ASSTA).1998.
  • 4Girolami M.Mercer kernel Based Clustering in Feature Space[J].IEEE Trans Neural Networks (S1045-9227),2002,29(1):123-127.
  • 5张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590. 被引量:195
  • 6伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 7K R Muller,S Mika,Gunnar R?tsch,et al.An Introduction to Kernel-based Learning Algorithms[J].IEEE Trans.Neural Networks (S1045-9227),2001,12(3):181-202.
  • 8Sch Ikopf B,Mika S,Burges C,et al.Input Space Versus Feature Space in Kernel-based Method[J].IEEE Trans Neural Networks (S1045-9227),1999,10(5):1000-1017.
  • 9吴玺宏.一个面向说话人识别的汉语语音数据库[EB/OL].(2000)[2006].http://nlprweb.ia.ac.cn/english/irds/chinese/ Sinobiometrics PDF/ Wuxi-hong.pdf.
  • 10何致远,胡起秀,徐光祐.两级决策的开集说话人辨认方法[J].清华大学学报(自然科学版),2003,43(4):516-520. 被引量:12

二级参考文献21

  • 1何致远.说话人确认和辨认的研究与实现[D].北京:清华大学,2002.
  • 2何致远 胡起秀 姚志宏.基于HMM的数字串提示文本的说话人确认[A]..第九届全国多媒体技术学术会议论文集[C].北京,2000.215—219.
  • 3Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 4Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 5Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 6Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 7Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 8Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 9Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.
  • 10Bezdek J C, Keller J M, Krishnapuram R, et al. Will the Real IRIS Data Please Stand Up?[J]. IEEE Trans on Fuzzy System, 1999, 7(3): 368-369.

共引文献250

同被引文献86

引证文献10

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部