期刊文献+

基于交通流量控制的二元蚁群优化模型 被引量:5

Binary Ant Colony Optimization Based on Traffic Flow Control
下载PDF
导出
摘要 针对多模域上的蚁群优化,提出了一种交通流量控制策略。此策略启发于由A.Dussutour等发现的真实蚁群在高度拥挤下的交通组织行为。算法引入了“交通流量控制”策略来保持群体的多样性,对于每段路径都引入相应的流量阈值。算法被应用于几个典型多模函数优化中并与二元蚁群优化、二元菁英蚁群优化和二元蚁群系统算法进行比较。实验结果证明基于交通流量控制的二元蚁群优化算法能够在多模域中获得稳定的全局和局部峰值集,拥有远优于上述算法的多模搜索能力。 A Traffic Flow Control strategy for Binary Ant System (TFC-BAS) was proposed and applied to multimodal optimization problems. The strategy is inspired by traffic organization in real ants under crowded conditions found by A, Dussutour et, al, The strategy can prevent loss of diversity of solutions by introducing a so called "flow thresholar' to each path of solutions, Experiment results on some typical multimodal complex functions show that TFC-BAS has much better capability than Binary Ant System (BAS), Binary Elitist Strategy for Ant System (E-BAS) and Binary Ant colony System (BACS) in locating and marinating stable global arid local optima in multimodal search space.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第10期2346-2350,共5页 Journal of System Simulation
基金 国家自然科学基金资助项目(60472099) 浙江省自然科学基金资助项目(Y106080)
关键词 优化算法 蚁群优化算法 二元蚁群优化算法 交通流量控制策略 optimization algorithms ant colony optimization binary ant colony optimization traffic flow control strategy
  • 相关文献

参考文献15

  • 1Dorigo M,Maniezzo V,Colorni A.The Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B(S1083-4419),1996,26(1):29-42.
  • 2Gambardella LM,Dorigo M.Ant-Q:A Reinforcement Learning Approach to the Traveling Salesman Problem[C]// Proceedings of the Eleventh International Conference on Machine Learning,Morgan Kaufmann,San Francisco.1995.
  • 3Dorigo M,Gambardella L M.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[J].IEEE Transactions on Evolutionary Computation (S1089-778X),1997,1(1):53-66.
  • 4Stützle T,Hoos H.MAX-MIN Ant System[J].Future Generation Computer Systems (S0167-739X),2000,16(8):889-914.
  • 5Stützle T,Dorigo M.A Short Convergence Proof for a Class of ACO Algorithms[J].IEEE Transactions on Evolutionary Computation (S1089-778X),2002,6(4):358-365.
  • 6Birattari M,Caro G D,Dorigo M.Toward the Formal Foundation of Ant Programming[C]// 3rd International Workshop on Ant Algorithms,Brussels,Belgium.2002.
  • 7Blum C,Roli A,Dorigo M.The Hyper-Cube Framework for Ant Colony Optimization[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B(S1083-4419),2004,34(12):1161-1172.
  • 8王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 9陈崚,秦玲,陈宏建,徐晓华.具有感觉和知觉特征的蚁群算法[J].系统仿真学报,2003,15(10):1418-1425. 被引量:36
  • 10熊伟清,余舜浩,赵杰煜.具有分工的蚁群算法及应用[J].模式识别与人工智能,2003,16(3):328-333. 被引量:14

二级参考文献25

  • 1康立山 谢云 等.非数值并行算法(第1册)[M].北京:科学出版社,1997..
  • 2Colorni A, Dorigo M, Maniezzo V. Distributed Optimization by Ant Colonies. In: Proc of the 1st European Conference on Artificial Life, Pans, Elsevier, 1991, 134- 142.
  • 3Dorigo M, Dicaro G, Gambardella L M. Ant Algorithm for Discrete Optimization. Artificial Life, 1999, 5(2): 137- 172.
  • 4Bonabeau E, Dorigo M, Theraula T. From Natural to Artificial Swarm Intelligence. New York: Oxford University Press, 1999.
  • 5Xiong Weiqing, Wei Ping. A Kind of Ant Colony Algorithm for Function Optimization. In: Proc of the IEEE 2002 International Conference on Machine Learning and Cybernetics, Beijing, 2002,552 - 555.
  • 6Stuzle T, Hoos H. Max-Min Ant System and Local Search for Ombinational Optimization Problem. In: Proc of the IEEE International Conference on Evolutionary Computation (JCEC'97), New York, 1997, 309-314.
  • 7Jiang Rui,Proc Conference on Intelligent Information Processing(WCC 2000 IIP 2000),2000年,478页
  • 8Wu Qinghong,计算机研究与发展,1999年,36卷,10期,1240页
  • 9康立山,非数值并行算法.1 模拟退火算法,1997年
  • 10康立山 谢云 尤矢勇 罗祖华.非数值并行算法—模拟退火算法[M].北京:科学出版社,1997..

共引文献590

同被引文献35

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部