期刊文献+

一种基于事务规则树的高效关联规则挖掘算法 被引量:3

Algorithm of Effective Association Rules Mining Based on Transaction Rule-tree
下载PDF
导出
摘要 提出了基于事务规则树改进的关联规则快速挖掘算法——FG算法。该算法不需要查找频繁项集,可直接求出所有无冗余的关联规则;将FG算法与其他算法进行实验比较,结果表明,FG算法在效率上优于其他算法,是有效的、可行的关联规则挖掘算法。 A quick and effective mining algorithm of association rules:FG algorithm based on the transaction rule-tree was put forward . It immediately mined all no redundancy rules by avoiding finding frequency itemsets. Based on the empirical result, compared the FG algorithm with other algorithms. The results indicated that the method was better than the other algorithms in the efficiency, and it was the feasible and validity.
出处 《计算机应用研究》 CSCD 北大核心 2007年第5期83-86,共4页 Application Research of Computers
基金 江苏省高校自然科学基金资助项目(05KJ520107) 南通大学自然科学基金资助项目(05Z061)
关键词 数据挖掘 关联规则 支持度 事务规则树 data mining association rule support transaction rule-tree
  • 相关文献

参考文献8

二级参考文献21

  • 1Aggarwal C C,Proc Int Conference Data Engineering,1998年,402页
  • 2Park J S,Proc of ACMSIGMOD Int Conference on Management of Data,1995年,175页
  • 3http://www. cs. helsinki. fi/u/goethals/
  • 4http://www. ics. uci. edu/~mlearn/MLRepository. html
  • 5Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database. In: P Buneman, S Jajodia eds. Proc. of 1993 ACM SIGMOD Conf. on Management of Data. Washington DC: ACM Press, 1993. 207~216
  • 6Agrawal R, Srikant R. Fast algorithms for mining association rules. In: J Bocca, M Jarke, C Zaniolo eds. Proc. of the 20th Int'l Conf. on Very Large DataBases (VLDB'94). Santiago: Morgan Kaufmann, 1994. 487~499
  • 7Zaki M, Parthasarathy S, Ogihara M, Li W. New algorithms for fast discovery of association rules. In: D Heckerman, et al eds.Proc of the Third Intl. Conf. on Knowledge Discovery and Data Mining (KDD'97). AAAI Press, 1997. 283
  • 8Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: M Dunham, J Naughton, W Chen eds. Proc. of 2000 ACM-SIGMOD Int'l Conf on Management of Data (SIGMOD'00). Dallas, TX, New York:ACM Press, 2000. 1~12
  • 9http://fuzzy. cs. uni-magdeburg. de/~borgelt/
  • 10R. Agrawal, T. Imielinski, A. Swami. Mining association rules between sets of items in large databases. The ACM SIGMOD Int'l Conf. Management of Data, Washington, 1993.

共引文献79

同被引文献13

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部