期刊文献+

Improving Fault Detection in Modified Code-A Study from the Telecommunication Industry

Improving Fault Detection in Modified Code-A Study from the Telecommunication Industry
原文传递
导出
摘要 Many software systems are developed in a number of consecutive releases. In each release not only new code is added but also existing code is often modified. In this study we show that the modified code can be an important source of faults. Faults are widely recognized as one of the major cost drivers in software projects. Therefore, we look for methods that improve the fault detection in the modified code. We propose and evaluate a number of prediction models that increase the efficiency of fault detection. To build and evaluate our models we use data collected from two large telecommunication systems produced by Ericsson. We evaluate the performance of our models by applying them both to a different release of the system than the one they are built on and to a different system. The performance of our models is compared to the performance of the theoretical best model, a simple model based on size, as well as to analyzing the code in a random order (not using any model). We find that the use of our models provides a significant improvement over not using any model at all and over using a simple model based on the class size. The gain offered by our models corresponds to 38-57% of the theoretical maximum gain. Many software systems are developed in a number of consecutive releases. In each release not only new code is added but also existing code is often modified. In this study we show that the modified code can be an important source of faults. Faults are widely recognized as one of the major cost drivers in software projects. Therefore, we look for methods that improve the fault detection in the modified code. We propose and evaluate a number of prediction models that increase the efficiency of fault detection. To build and evaluate our models we use data collected from two large telecommunication systems produced by Ericsson. We evaluate the performance of our models by applying them both to a different release of the system than the one they are built on and to a different system. The performance of our models is compared to the performance of the theoretical best model, a simple model based on size, as well as to analyzing the code in a random order (not using any model). We find that the use of our models provides a significant improvement over not using any model at all and over using a simple model based on the class size. The gain offered by our models corresponds to 38-57% of the theoretical maximum gain.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2007年第3期397-409,共13页 计算机科学技术学报(英文版)
基金 This paper is an extended version of a paper presented at APSEC 2005 Conference This work was partly funded by The Knowledge Foundation in Sweden under a research grant for the project "Blekinge Engineering Software (qualities (BESQ)" (htt.p://www.bth.se/besq).
关键词 fault prediction metrics testing and debugging fault prediction, metrics, testing and debugging
  • 相关文献

参考文献1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部