期刊文献+

超收敛的双p阶猜想 被引量:1

Superconvergence of Bi-p Conjecture
原文传递
导出
摘要 考虑双p阶超收敛的猜想.它对p=1,2,3已证明.这里我们介绍了对p=4开始的尝试. Superconvergence of bi-p conjecture is considered. It has been proved for p = 1,2, 3. We present here a try started for p = 4.
作者 周俊明 林群
出处 《数学的实践与认识》 CSCD 北大核心 2007年第9期109-110,共2页 Mathematics in Practice and Theory
关键词 双p次有限元 双p阶猜想 bi-p finite elements bi-p order conjecture
  • 相关文献

参考文献1

共引文献1

同被引文献12

  • 1朱起定 林群.有限元超收敛理论[M].湖南科学技术出版社,1989..
  • 2Lin Q, Zhou J. Supereonvergenee in high-order Galerkin finite element methods [J]. Computer Methods in Applied Mechanics and Engineering, 2007,196 (37) : 3779-3784.
  • 3Brandts J, Krizek M. History and future of supereonvergence[C]. JAKUTO International Series, Math Sei Appl, 2001,15 : 22-33.
  • 4Lin Q, Lin J. Supereonverge on anistropie meshes[J]. International Journal of Information and Systems Sciences, 2007,3(2) :261-266.
  • 5Wahlbin L B. Superconvergence in Galerkin Finite Element Methods[M]. Springer,1995.
  • 6Schatz A H, Wahlbin L B. Interior maximum norm estimates for finite element methods part Ⅱ[J]. Math Comp, 1995,64:907-928.
  • 7Schatz A H, Sloan I, Wahlbin L B. Supereonvergence in the finite element method and meshes which are locally symmetric with respect to a point [J]. SIAM J Numer Anal, 1996,33 : 505-521.
  • 8Schatz A H. Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids : part Ⅰ global estimates[J]. Math Comp, 1998,67 : 877-899.
  • 9Blum H, Lin Q, Rannacher R. Asymptotic error expansions and Richardson extrapolation for linear finite elements[J]. Numer Math,1986,49:11-37.
  • 10Scott R. Optimal L^∞ estimates for the finite element method on irregular meshes[J]. Math Comp,1976,30:681-697.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部