期刊文献+

随机结构地震响应的TMD控制 被引量:3

Optimal Design of TMD for Stochastic Structure under Earthquake Excitation
下载PDF
导出
摘要 讨论了随机结构地震响应的TMD控制及其优化问题。借Gegenbauer多项式逼近法,首先把随机结构-TMD系统转化为等效的确定性扩阶系统,然后用演变随机响应统一解法求其随机响应。引进响应面法来建立结构随机响应与TMD参数之间的近似关系式,通过优化得到随机结构响应的最优TMD控制系统。算例证实,最优TMD可最有效地控制结构的总体响应,且对随机结构的每一个样本都有很好的控制效果。所以说,最优TMD控制具有鲁棒性。 Aim. TMD is short for Tuned Mass Damper, an effeetive passive strategy for vibration suppression. A stochastic structure we consider is modeled as a structure with bounded random parameters. The earthquake excitation is modeled by an evolutionary random process of the 1964 Niigata type. So this paper is devoted to the optimal design of a TMD for a stochastic structure under evolutionary random excitation. Based on Gegenbauer polynomial approximation, the stochastic structure with TMD is first transformed into its deterministic equivalent system, whose evolutionary random responses can be readily obtained by the available unified approach. Then the relationship between the evolutionary random responses and the parameters of the TMD can be explicitly formulated by means of the response surface methodology. Based on this explicit formulation the optimal parameters of TMD can be found through Matlab package. The procedure of optimal design of TMD is illustrated through an example. Numerical results, shown in Table 1 and Fig. 3 in the full paper, show preliminarily that the optimized TMD can effectively suppress the earthquake responses of the structure. Moreover the TMD works equally well for every sample system.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2007年第2期311-314,共4页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(10332030)资助
关键词 随机结构 Gegenbauer多项式近似 TMD stochastic structure, Gegenbauer polynomial approximation, TMD(Tuned Mass Damper)
  • 相关文献

参考文献3

  • 1Housner G W,Bergman L A,Caughey T K,et al.Structural Control:Past Present and Future.Journal of Engineering Mechanics ASCE,1997,123:897~971
  • 2Fang T,Leng X L,Ma X P,Meng G.λ-PDF and Gegenbauer Polynomial Approximation for Dynamic Analysis of Random Structures.Acta Mechanica Sinica,2004,20:292~298
  • 3Wu C L,Ma X P,Fang T.A Complementary Note on Gegenbauer Polynomial Approximation for Random Response Problem of Stochastic Structure.Probabilistic Engineering Mechanics,2006,21:410~419

同被引文献21

  • 1王均刚,马汝建,赵东,林近山.TMD振动控制结构的发展及应用[J].济南大学学报(自然科学版),2006,20(2):172-175. 被引量:27
  • 2唐时军,唐驾时,欧耀辉.竖向地震作用下的结构TMD控制分析[J].湖南理工学院学报(自然科学版),2006,19(3):60-63. 被引量:3
  • 3李创第,丁晓华,陈俊忠,黄志华.基础隔震结构基于Clough-Penzien谱随机地震响应分析的复模态法[J].振动与冲击,2006,25(5):162-165. 被引量:21
  • 4Kwon Ho-ChuI, Kim Man-Cheol, Lee In-won. Vibration control of bridges under moving loads[J]. Computers & Structures, 1998, 66(4): 473-480.
  • 5Jo Byung-Wan, Tae Ghi-Ho, Lee Du-Wha. Structural vibration of tuned mass damper-installed three-span steel box bridge [J]. International Journal of Pressure Vessels and Piping, 2001, 78: 667-675.
  • 6张可村.工程优化的算法与分析[M].西安:西安交通大学出版社,1990,
  • 7Fang. T, Wang. Z N. Stationary Response Due to Arbitrarily Fil- tered White Noise Excitation [ J ]. Journal of Northwestern University. English Extra Issue, 1987,3 ( 1 ) :41-48.
  • 8Kanai. K. Semi-empirical Formula for the Seismic Characteristics of the ground Motion [ R ]. Japan.Earthquake Research In- stitute University of Tokyo,1957:309-325.
  • 9Tajimi. H A. Statistical Method of Determining the Maximum Response of Building Structure During an earthquake [ J ]. 2end Word Conference on Earthquake Engineering, 1960 (35) :781-798.
  • 10Zhou X Y, Yu R F, Dong D. Complex mode superposition algorithm for seismic responses of non-classically damped linear MDOF system[ J]. Journal of Earthquake Engineering,2004,8 (4) :597-641.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部