期刊文献+

植物叶片中轴图式与力学自适应性的关系(Ⅰ)——试验研究和数值模拟 被引量:8

Relationship Between Medial Axis Pattern of Plant Leaf and Mechanics Self-Adaptability(Ⅰ):Experimental Investigation and Numerical Simulation
下载PDF
导出
摘要 中轴图式是植物叶片的一个普遍几何特征,也是叶片承担自重和环境应力的主要结构单元.为探讨植物叶片拓扑结构对叶片的力学增强机理,采集双子叶植物的坐标数据制作了铜叶脉,通过在不同受力点施加不同量值的载荷,对叶脉的变形进行了试验研究和数值模拟.结果表明:叶脉的变形量符合叠加原理;数值模拟得到的变形趋势和变形量与试验结果趋于一致,证明所采用的试验方法是正确的. The medial axis pattern is not only the original geometric characteristic of plant leaf but also the major structural element that enables the plant leaf to stand the self-weight and the environmental stress. In order to reveal the theory of mechanics reinforcement of the plant leaf by the topological form, some copper veins were fabricated according to the data from the coordinates of dicotyledon. The deformations of the vein loaded with different forces at different points were then experimentally investigated and numerically simulated. The results indicate that the deformations of the vein follow the superposition principle, and that the simulated deformation and deformation tendency accord with the experimental ones, thus verifying the correctness of the test method adopted in this paper.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第3期42-46,52,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50675067) 广东省自然科学基金资助项目(05006496)
关键词 中轴图式 力学自适应性 机理 试验研究 数值模拟 medial axis pattern mechanics self-adaptability mechanism experimental investigation numerical simulation
  • 相关文献

参考文献10

二级参考文献21

  • 1邓建辉,郑宏,葛修润,熊文林.改进的Z^2应力恢复过程与h型自适应有限元分析[J].计算结构力学及其应用,1996,13(4):475-482. 被引量:4
  • 2[1]Blum H, Nagel R. Shape description using weighted symmetric axis features[J]. Pattern Recognition, 1978(10):167-180.
  • 3[2]Ivanov D, Kuzmin E, Burtsev S. An efficient integer-based skeletonization algorithm[J]. Computers & Graphics, 2000(24):41-51.
  • 4[3]Zhou Pei-de. Computational Geometry (in Chinese)[M]. Beijing: Tsinghua University Press, 2000.
  • 5[4]Wei Qing-xue. Studying on finite element modeling of fiber composite material bionic medial axis(in Chinese)[D]. Guangzhou: South China Univ. of Tech., 2002.
  • 6[5]Roland Mucke, Whilteman J R. A posterior error estimates and adaptation [J]. Int J Num Meth Eng, 1995,38:775-795.
  • 7[6]Kelly D W. The self equilibrium of residuals and complementary a-posterior error estimates in the finite element method [J]. Int J Num Meth Eng,1984,20:1 491-1 506.
  • 8[7]Zienkwicz O C, Zhu J A. A simple error estimator and adaptive procedure for practical engineering ana-lysis [J]. Int J Num Meth Eng, 1987, 24:337-357.
  • 9[8]Deng Jian-hui. Adaptive finite element analysis for joint rock-Method and implementation(in Chinese)[D]. Wuhan:Hydraulic and Electrical University of Wuhan, 1994.
  • 10Zienkiewica 0 C, Zhu J Z. A simple error estimator and adaptive procedure for practical engineering analysis [J]. lnt J Num Meth Eng, 1987, 24(2):337-357.

共引文献30

同被引文献60

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部