期刊文献+

用于模拟压电复合材料平面问题的边界点法 被引量:1

2-D simulation of electrostatic properties of piezoelectric composites using the boundary node method
原文传递
导出
摘要 针对含规则形状夹杂的压电复合材料平面问题,将边界点法和重复相似子域法相结合,实现了一种用于含有大量圆形夹杂的横观各向同性压电复合材料的分析方法,并通过相应的计算模型求得压电复合材料的等效材料性质。数值算例表明该方法具有很高的精度和一定的可行性。由于边界点法具有高精度的特性以及能对所有的内部夹杂边界进行离散,因此,很容易将该文方法扩展应用于分析含任意形状夹杂的压电复合材料。 The boundary node method was used for a 2-D numerical analysis of a piezoelectric composite material with regular shaped inclusions using the repeated similar sub-domain approach. The boundary node method was used to simulate the effective electroelastie properties of transverse isotropic piezoelectric composites with randomly distributed circular inclusions. Numerical examples show that the results are accurate with the dimension reduction inherent in the boundary element method. The boundary node method is a promising approach for analyzing piezoelectric composites with large numbers of both regular and irregular inclusions.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第5期734-737,共4页 Journal of Tsinghua University(Science and Technology)
基金 教育部博士后科研基金资助项目(023220028) 高等学校全国优秀博士论文基金资助项目(200242)
关键词 压电复合材料 边界点法 重复相似子域法 无网格法 piezoelectric composites boundary node method repeated similar sub-domain meshless method
  • 相关文献

参考文献10

  • 1Qin Q H,Yu S W.Effective moduli of thermopiezoelectric material with microcavities[J].International Journal of Solids and Structures,1998,35:5085—5095.
  • 2Li Z H,Wang C,Chen C Y.Effective electromechanical properties of transversely isotropic piezoelectric ceramics with microvoids[J].Comp Mater Sci,2003,27:381—392.
  • 3Mukherjee Y X,Mukherjee S.The boundary node method for potential probelms[J].International Journal for Numerical Methods in Engineering,1997,40:797—815.
  • 4WANG Hongtao,TAN Guowen,CEN Song,et al.Numerical determination of effective properties of voided piezoelectric materials using BNM[J].Eng Anal Bound Elem,2005,29:636—646.
  • 5Yao Z H,Kong F Z,Wang H T,et al.2D simulation of composite materials using BEM[J].Eng Anal Bound Elem,2004,28:927—935.
  • 6孔凡忠,姚振汉,王朋波.模拟含随机分布椭圆形夹杂弹性体的边界元法[J].清华大学学报(自然科学版),2002,42(8):1091-1094. 被引量:2
  • 7Ding H J,Wang G Q,Chen W Q.A boundary integral formulation and 2D fundamental solutions for piezoelectric media [J].Comp Methods Appl Mech Eng,1998,158:65—80.
  • 8Fan H,Qin S W.A piezoelectric sensor embedded in a non—piezoelectric matrix[J].International Journal of Engineering Science,1995,33:379—388.
  • 9Mikata Y.Determination of piezoelectric Eshelby tensor in transversely isotropic piezoelectric solids[J].International Journal of Engineering Science,2000,38:605—641.
  • 10Dunn M.Elastic constants of textured short—fiber composites[J].Journal of Mechanics and Physics of Solids,1996,44(9):1509—1541.

二级参考文献1

共引文献1

同被引文献18

  • 1钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136. 被引量:510
  • 2刘正兴,孙雁,王国庆,等.计算固体力学[M].2版.上海:上海交通大学出版社,2010.
  • 3Sze KY, Yang XM, Yao LQ. Stabilized plane and axisymmetric piezoelectric finite element models [J]. Finite Elements in Analysis and Design, 2004, 40: 1105~1122.
  • 4Ohs R R, Aluru N R. Meshless analysis of piezoelectric devices [J]. Computational Mechanics, 2001, 27: 23~36.
  • 5Liu G R, Dai K Y, Lim K M, et al. A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures [J]. Computational Mechanics, 2002, 29: 510~519.
  • 6Sladek J, Sladek V, Zhang Ch, et al. Meshless local Petrov-Galerkin method for plane piezoelectricity [J]. CMC: Computers, Materials & Continua, 2004, 1: 129~140.
  • 7Sukumar N, Moran B, Belytschko T. The natural elements method in solid mechanics [J]. International Journal for Numerical Methods in Engineering, 1998, 43: 839~887.
  • 8姚伟岸,杨柳.压电材料三维问题的虚边界元——最小二乘配点法[J].计算力学学报,2007,24(6):779-784. 被引量:3
  • 9曾祥勇,朱爱军,邓安福.自然单元法在Winkler地基薄板计算中的应用[J].计算力学学报,2008,25(4):547-551. 被引量:8
  • 10刘芳,姚林泉.平面压电结构的径向基函数无网格法[J].苏州大学学报(自然科学版),2008,24(4):18-23. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部