期刊文献+

基于四边形网格的可调细分曲面造型方法 被引量:3

An adjustable subdivision surface modeling based on quadrilateral meshes
下载PDF
导出
摘要 提出了一种基于四边形网格的可调细分曲面造型方法。该方法不仅适合闭域拓扑结构,且对初始网格是开域的也能进行处理。细分算法中引入了可调参数,增加了曲面造型的灵活性。在给定初始数据的条件下,曲面造型时可以通过调节参数来控制极限曲面的形状。该方法可以生成C1连续的细分曲面。试验表明该方法生成光滑曲面是有效的。 This paper presented an adjustable subdivision surface scheme based on quadrilateral meshes. The scheme can deal with both open topological structures and close topological structures. The scheme can produce subdivision surface of C^1 continuity of limit surface. Because an adjustable parameter was introduced to the scheme, the surface modeling was flexible. Given the condition of the initial data, we can adjust and control the limit surface shape through selecting appropriate parameters. The method is effective in generating smooth surfaces.
出处 《计算机应用》 CSCD 北大核心 2007年第5期1119-1120,1144,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60672135)
关键词 曲面造型 可调细分 细分曲面 四边形网格 surface modeling adjustable subdivision scheme subdivision surface
  • 相关文献

参考文献8

  • 1CATMULL E,CLARK J.Recursively Generated B-Spline Surfaces On Arbitrary Topological Meshes[J].Computer Aided Design,1978,10(6):350 -355.
  • 2DOO D,SABIN MA.Behaviour of Recursive Subdivision Surfaces Near Extraordinary Points[J].Computer Aided Design,1978,10(6):356-360.
  • 3BALL AA,STORRY DJT.A matrix approach to the analysis of recursively generated B-spline surfaces[J].Computer Aided Design,1986,18(8):437 -442.
  • 4BALL AA,STORRY DJT.Conditions for tangent plane continuity over recursively generated B-spline surfaces[J].ACM Transactions on Graphics,1988,7(2):83-102.
  • 5LOOP C.Smooth Subdivision Surfaces Based on Triangles[D].University of Utah,Department of Mathematics,1987.
  • 6MAILLOT J,STAM J.A Unified Subdivision Scheme for Polygonal Modeling[J].Computer Graphics Forum,2001,20(3):471-479.
  • 7STAM J,LOOP C.Quad/triangle subdivision[J].Computer Graphics Forum,2003,22(1):79-85.
  • 8WARREN J,SCHAEFER S.A Factored Approach to Subdivision Surfaces[J].Computer Graphics & Applications,2004,24(3).

同被引文献21

  • 1曾庭俊,罗国明,张纪文.Catmull-Clark细分曲面的形状调整[J].计算机辅助设计与图形学学报,2004,16(5):707-711. 被引量:7
  • 2赵向军,张宏鑫,鲍虎军.Loop型半静态细分方法[J].计算机辅助设计与图形学学报,2006,18(7):929-935. 被引量:3
  • 3赵宏庆,彭国华,叶正麟,周敏.自适应细分方法进行曲面造型[J].计算机应用研究,2006,23(9):72-74. 被引量:7
  • 4李桂清,吴壮志,马维银.自适应细分技术研究进展[J].计算机辅助设计与图形学学报,2006,18(12):1789-1798. 被引量:21
  • 5Amresh A,FarinG,Razdan A.Adaptive subdivision schemes for triangle meshes [Z]. Hierarchical and Geometric Methods in Scientific Visualisation,2003:319-327.
  • 6赵燕.C^1连续的可调细分曲面[D].西安:西北工业大学硕士论文集,2006.
  • 7Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes [ J ]. Computer-Aided Design, 1978, 10(6) : 350-355.
  • 8Doo D, Sabin M. Behavior of recursive division surfaces near extraordinary points [ J ]. Computer- Aided Design, 1978, 10 ( 6 ) : 356 - 360.
  • 9Warren J, Weimer H. Subdivision methods for geometric design : A constructive approach [ M ]. San Francisco : Morgan Kaufmann Pub, 2002:69- 81.
  • 10Sabin M. Recent progress in subdivision: a survey[ J]. Advances in Muhiresolution for Geometric Modelling, 2005: 203-230.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部