期刊文献+

含椭圆孔无限大弹性导电薄板在均匀磁场作用下的应力分析

ANALYSIS OF STRESSES IN AN INFINITE ELASTIC CONDUCTIVE PLATE WITH AN ELLIPTIC HOLE SUBJECTED TO A UNIFORM MAGNETIC FIELD
下载PDF
导出
摘要 给出一种针对含椭圆孔的导电薄板在电磁力作用下的分析方法。其研究重心是定量计算椭圆孔对电流密度以及板内应力分布在椭圆长轴端点处的集中效应。分析引入椭圆坐标,以助于处理问题的边界条件,并最终给出直角坐标下各分量的对应结果,以便于实际应用。首先求出薄板内电流密度分布,然后考虑一类简化的计算模型,把应力求解确定为反平面剪切问题,进而推出应力在板内分布的解析解。并利用所获得的椭圆孔洞结果推断出Ⅲ型裂纹的应力强度因子。 Stress distribution is determfined in a thin conductive plate containing an elliptic hole under the external electromagnetic loads. The aim of this study is to explore the concentrating effects of both the electric current density and the stresses in the plate due to the existence of the elliptic hole. Use is made of the elliptic coordinates for the ease of treating ellipse shaped boundary, while the analyrical results for the components in the Cartesian coordinates are provided for convenience of application. After the distribution of the current density is derived, an anti-plane shear problem is formulated whose solution is obtained in closed form. The mode Ⅲ stress intensity factor is deduced by considering the ease in which the minor axis vanishes when the ellipse degenerates to a Griffith crack.
出处 《机械强度》 CAS CSCD 北大核心 2007年第3期492-495,共4页 Journal of Mechanical Strength
关键词 电磁力 电流场 应力计算 Electromagnetic loads Electric current field Stress analysis
  • 相关文献

参考文献8

  • 1常福清,张晖辉,原洪海,白象忠.载流薄板裂纹尖端的电热效应[J].机械强度,2003,25(5):544-547. 被引量:2
  • 2Satapathy S,Stefani F,Saenz A.Crack tip behavior under pulsed electromagnetic loading.IEEE Transactions on Magnetics,2005,40(1):226~230.
  • 3Shindo Y,Takeuchi A.Singular stresses of a finite crack in an elastic conductive strip under electromagnetic force.Fusion Engineering and Design,1988,(6):199~205.
  • 4Yagawa G,Horie T.Cracked beam under influence of dynamic electromagnetic force.Nuclear Engineering and Design,1982,69(11):49~55.
  • 5汪青杰,高明,陈皓.导电薄板内裂纹尖端区域的电磁应力[J].材料科学与工艺,2005,13(2):175-177. 被引量:3
  • 6高光明.椭圆柱体外部区域的一个静电场问题[J].河北师范学院学报(自然科学版),1994(4):46-50. 被引量:1
  • 7Timoshenko S,Goodier J N.Theory of elasticity.3rd Edition,New York:McGraw-Hill,1970.182~194.
  • 8Hasebe N,Kutanda Y.Calculation of stress intensity factor from stress concentration.Engineering Fracture Mechanics,1978,10(2):215~221.

二级参考文献10

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部