期刊文献+

基于多尺度空间ANN-CA模型的遥感影像超分辨率制图方法研究 被引量:7

Research on Super-resolution Mapping for Remote Sensing Images Based on a Multi-scale Spatial ANN-CA Model
下载PDF
导出
摘要 为获取遥感影像混合像元中各组分的空间分布状况,提出一种新的遥感影像超分辨率制图方法,用于继混合像元分解之后的亚像元定位。将元胞自动机理论移植到不同空间尺度的演化上,建立基于神经网络的多尺度元胞自动机模型(ANN-CA),并利用该模型提取北京市海淀区城镇用地超分辨率信息。结果表明,该方法能有效表达图像像元之间的空间自相关性。 Mixed pixel is a familiar problem in remotely sensed image analysis and classification. The developing soft classification technology provides no indication of the spatial distribution of each class composition in the IFOV given by a pixel. In this paper, the theory of cellular automata (CA) is transplanted to the evolvement of spatial scale. On the basis of multi-scale neural-network-based CA model, a new technology of super-resolution mapping from remote sensing images is proposed, in order to give the appropriate spatial location of each class within the mixed plxel with the agreement of the different land cover fractions which are extracted from a soft classification.The method is tested on super-resolution mapping of urban area in Haidian District, Beijing City at different spatial scales, which indicates convenience and efficiency of the method for expressing the spatial correlation between pixels.
出处 《地理与地理信息科学》 CSCD 北大核心 2007年第3期42-46,共5页 Geography and Geo-Information Science
基金 教育部"新世纪优秀人才支持计划"
关键词 混合像元 亚像元 超分辨率制图 神经网络 元胞自动机 mixed pixel sub-pixel super-resolution mapping neural networks cellular automata
  • 相关文献

参考文献17

  • 1TATEM A J,LEWIS H G,ATKINSON P M,et al.Super-resolution target identification from remotely sensed images using a Hopfield neural network[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39:781-796.
  • 2GARCIA-HARO F J,GILABERT M A,MELIA J.Linear spectral mixture modeling to estimate vegetation amount from optical spectral data[J].International Journal of Remote Sensing,1996,17:3373-3400.
  • 3FOODY G M,COX D P.Sub-pixel and cover composition estimation using a linear mixture model and fuzzy membership functions[J].International Journal of Remote Sensing,1994,15:619-631.
  • 4FOODY G M.Hard and soft classification by a neural network with non-exhaustively defined set of classes[J].International Journal of Remote Sensing,2000,23:3853-3864.
  • 5BROWN M,GUNN S R,LEWIS H G.Support vector machines for optimal classification and spectral unmixing[J].Ecol.Modeling,1999,120:167-179.
  • 6ATKINSON P M.Mapping sub-pixel boundaries from remotely sensed images[A].KEMP Z.Innovations in GIS 4[C].London:Taylor and Francis,1997.166-180.
  • 7ATKINSON P M,CUTLER M,LEWIS H G.Mapping sub-pixel proportional land cover with AVHRR imagery[J].International Journal of Remote Sensing,1997,18:917-935.
  • 8FOODY G M.Sharpening fuzzy classification output to refine the representation of sub-pixel land cover distribution[J].International Journal of Remote Sensing,1998,19:2593-2599.
  • 9TATEM A J,LEWIS H G,ATKINSON P M,et al.Land cover mapping at the sub-pixel scale using a Hopfield neural network[A].Proceedings of 28th international symposium on remote sensing of environment[C].Cape Town,Africa,2000.
  • 10TATEM A J,LEWIS H G,ATKINSON P M,et al.Super-resolution land cover pattern prediction using a Hopfield neural network[J].Remote Sensing of Environment,2002,79:1-14.

共引文献43

同被引文献286

引证文献7

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部