期刊文献+

基于SVM的网络威胁频率预测算法研究 被引量:1

Research on SVM-Based Algorithms for Network Threat Frequency Prediction
下载PDF
导出
摘要 网络安全风险评估分为定量评估与定性评估两种方法。现今的评估方法多数仅对网络安全事件进行定性的评估,不能给出网络安全风险值的定量说明,评估结果缺乏客观性、动态性和可信性。本文在深入研究风险评估理论和实验的基础上提出了一种新的网络安全定量风险评估方法——基于支持向量机SVM的网络威胁频率预测方法,构造了相应的SVM模型,并采用仿真数据对模型进行了验证。该模型对来自某局域网IDS实测数据的网络威胁频率进行了预测,和真实值的对比说明,所提出的网络威胁预测算法是行之有效的。 There are two types of risk assessment methods: the quantitative and qualitative ones. Most risk assessment methods only give a qualitative account of the network threat events without the quantitative value, and the evaluation resuits lack objectivity, dynamics and credibility. This paper presents a new quantitative assessment method, which is a predicting algorithm for network threat frequency based on SVM. A model of support vector regression machine is constructed, and the performance of the model is valida:ed based on simulation data. The SVM model predicts the threat frequency using a LAN's detected data by IDS, compared with the detected data, the result shows that our method is feasible.
出处 《计算机工程与科学》 CSCD 2007年第5期11-14,共4页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60303012 90104001)
关键词 风险评估 威胁频率 支持向量机 时间序列 核函数 risk assessment threat frequency support vector machine-time sequence kernel function
  • 相关文献

参考文献15

  • 1Ishiguro M,Suzuki H,Murase I,et al.Internet Threat Detection System Using Bayesian Estimation[A].Proc of the 16th Annual FIRST Conf on Computer Security Incident Handing[C].2004.
  • 2Weber D,Morris P.Risk Perception of a Probabilistic Risk Assessment:A Case Study[A].Proc of WM'99[C].1999.
  • 3Chen Y,Jensen C D,Gtay E,et al.A General Risk Assessment of Security in Pervasive Computing[R].Technical Report TCD-CS-2003-45,Department of Computer Science,Trinity College Dublin,2003.
  • 4Jonsson E,Olovsson T.A Quantitative Model of the Security Intrusion Process Based on Attacker Behavior[J].IEEE Trans on Software Engineering,1997,23(4):235-245.
  • 5Gunn S R.Support Vector Machines for Classification and Regression[R].Technical Report ISIS-1-98,Image Speech Intel ligent System Research Group,University of Southampton,1998.
  • 6Cover T M.Geometrical and Statistical Properties of Systems of Linear In-Equalities with Applications to Pattern Recognition[J].IEEE Trans on Electronic Computers,1965,14(3):326-334.
  • 7Cprtes C,Vapnik V.Support Vector Networks[J].Machine Learning,1995,20(3):273-297.
  • 8Vapnik V,Golowich S,Smola A.Support Vector Method for Function Approximation,Regression Estimation,and Signal Processing[A].Mozer M,Jordan M,Petsche T eds.Neural Information Processing Systems[M].MIT Press,1997.
  • 9Muller K R,Smola A J,Ratsch G,et al.Predicting Time Series with Support Vector Machines[A].Proc of ICANN'97[C].1997.
  • 10Drucker H,Burges C,Kaufman L,et al.Support Vector Regression Machines[A].Mozer M,Jordan M,Petsche T eds.Neural Information Processing Systems[M].Cambride:MIT Press,1997.

二级参考文献1

共引文献2275

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部