摘要
对基于差别矩阵的核求解方法而言,差别矩阵的规模是直接影响核求解效率的关键因素.为此,针对不平衡分类数据情况,提出一种基于多差别矩阵的核求解算法.该算法先按决策属性值划分对象集,进而建立任意两个不同对象集对应的差别矩阵,形成多差别矩阵,从而求出核.各差别矩阵因不平衡分类数据可有效降低其规模,提高核的求解效率.理论分析和实验结果表明算法是有效可行的.
For the method based on discernibility matrix for computing a core, reducing the size of discernibility matrix is the key for improving the performance of computation of a core, Therefore, an algorithm (AMDMC) based on multi-discernibility matrix is introduced to computation of a core for the case of unbalanced classification data. By the decision attribute's value, the all objects are partitioned into some subsets. For any two different subsets, a subdiscernibility matrix is created. Finally, the multi-discernibility matrix is obtained and a core is acquired. Each subdiscernibility matrix holds a small space because of unbalanced classification data, so the AMDMC algorithm is in high efficiency. Theoretical analysis and experiment results show the effectiveness of the algorithm.
出处
《控制与决策》
EI
CSCD
北大核心
2007年第6期652-656,662,共6页
Control and Decision
基金
国家自然科学基金项目(70371015)
江苏省自然科学基金项目(BK2005135)
江苏省高校自然科学研究基金项目(05KJB5200665)
关键词
粗糙集
多差别矩阵
核
Rough set
Multi-discernibility matrix
Core