期刊文献+

动态分阶段蚁群算法及其收敛性分析 被引量:4

Dynamic stage ant colony algorithm and its convergence
下载PDF
导出
摘要 为了提高蚁群算法的收敛速度和求解精度,根据仿生优化算法在不同阶段的特点,提出一种改进的蚁群算法.该算法对参数和选择策略进行了分阶段设计,而且参数的分阶段是根据寻优状态动态划分的.通过对蚁群系统马尔科夫过程进行分析,证明了该算法的全局收敛性.针对典型的TSP问题进行仿真对比实验,验证了该算法在速度和精度方面优于传统蚁群算法. According to the stage properties of bionic optimization algorithms, an improved ant colony algorithm is proposed to enhance the speed and accuracy of the original algorithm. In the algorithm, parameters and selection Strategy are specially designed in different optimizing stages which are marked referring to the current optimizing states. Its global convergence is proved by analyzing the Markov process of the ant colony system. The contrasting experiments to the typical traveling sales problem prove that the proposed algorithm is advantageous over the traditional ant colony algorithms in speed and accuracy.
出处 《控制与决策》 EI CSCD 北大核心 2007年第6期685-688,共4页 Control and Decision
基金 国家自然科学基金项目(10371055 60673102)
关键词 蚁群算法 收敛性 动态分阶段 Ant colony algorithm Convergence Dynamic stage
  • 相关文献

参考文献6

  • 1Dorigo M,Maniezzo V,Colorni A.Ant system:Optimization by a colony cooperating agents[J].IEEE Trans on Systems,Man and Cybernetics,1996,26(1):29-41.
  • 2Dorigo M,Gambardella L M.Ant colony system:A cooperative learning approach to the traveling salesman problem[J].IEEE Trans on Evolutionary Computation,1997,1(1):53-66.
  • 3Walter J,Gutjahr.A graph-based ant system and its convergence[J].Future Generation Computer Systems,2000,16(8):873-888.
  • 4Stutzle T,Dorigo M.A short convergence proof for a class of ant colony optimization algorithm[J].IEEE Trans on Evolutionary Computions,2002,6(4):358-365.
  • 5石立宝,郝晋.随机摄动蚁群算法的收敛性及其数值特性分析[J].系统仿真学报,2004,16(11):2421-2424. 被引量:7
  • 6Stutzle T,Hoos H.Max-min ant system[J].Future Generation Computer Systems,2000,16(8):889-914.

二级参考文献4

  • 1M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Trans. Evol. Comput., 1997, 1(1): 53-66.
  • 2Walter J. Gutjahr. A Graph-based Ant System and its convergence[J]. Future Gener. Comput. Syst., 2000, 16(8): 873-888.
  • 3The universidad nacional Archive[EB/OL], http://www.ing.unlp. edu.ar/cetad/ mos/TSPBIB.
  • 4M. Dorigo, Vittorio Maniezzo, Alberto Colorni. Ant System Optimization by a Colony of Cooperating Agents[J]. IEEE Trans on System, Man and Cybernetics-Part B, 1996, 26 (1): 29-41.

共引文献6

同被引文献55

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部