期刊文献+

多小波子空间采样定理

Sampling Theorem for Multiwavelet Subspaces
下载PDF
导出
摘要 该文基于再生核Hilbert空间理论,把小波子空间的Walter采样定理推广到多小波子空间,建立了多小波子空间的均匀采样定理,利用Zak变换给出了由尺度函数构造重构函数的公式。进一步针对采样点不均匀的情况,建立了多小波子空间的不规则采样定理。最后给出数值算例。 In this paper, the multiwavelet sampling theorem from Walter's wavelet sampling theorem by reproducing kernel is generalized. The reconstruction function can be expressed by multiwavelet using Zak transform. Then the general case of the irregular sampling is considered and the irregular sampling theorem for multiwavelet subspaces is established. Finally, the corresponding examples are given.
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第6期1389-1393,共5页 Journal of Electronics & Information Technology
基金 上海市重点学科建设(T0102) 上海市教委发展基金(217635)资助课题
关键词 再生核 多小波 多小波子空间 采样定理 Reproducing kernel Multiwavelet Multiwavelet subspaces Sampling theorem
  • 相关文献

参考文献1

二级参考文献11

  • 1[1]Unser, M., Sampling-50 years after Shannon, Proceedings of IEEE, April 2000, 88(4): 569-587.
  • 2[2]Walter, G. G., A sampling theorem for wavelet subspaces, IEEE Trans. Inform. Theory, March 1992, 38(2):881-884.
  • 3[3]Janssen, A. J. E. M., The Zak transform and sampling theorem for wavelet subspaces, IEEE Trans. Signal Processing, December 1993, 41: 3360-3365.
  • 4[4]Chen, W., Itoh, S., A sampling theorem for shift-invariant subspace, IEEE Trans. Signal Processing, 1998, 46(10): 2822-2924.
  • 5[5]Xia. X. G., On sampling theorem, wavelet, and wavelet transforms, IEEE Trans. Signal Processing, De cember 1993, 41(12): 3524-3535.
  • 6[6]Geronimo, J. S., Hardin, D. P., Massopust, P. R., Fractal function and wavelet expansions based on several scaling functions, Jour. Appr. Theory, September 1994, 78(3): 373-401.
  • 7[7]Chui, C. K., Lian, J., A study of orthonormal multi-wavelets, Applied Numer. Math, March 1996, 20(3): 273-298.
  • 8[8]Plonka, G., Strela, V., Construction of multiscaling function with approximation and symmetry, SIAM J.Math. Anal, March 1998, 29(2): 481-510.
  • 9[9]Selesnick, I. W., Interpolating multiwavelet bases and the sampling theorem, IEEE Trans. Signal Processing, June 1999, 47(6): 1615-1621.
  • 10[10]Blu, T., Unser, M., Approximation error for quasi-interpolators and (multi) wavelet expansions, Applied and Computation Harmonic Analysis, 1999, 6: 219-251.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部