摘要
利用多层感知器自学习、非线性映射能力,提出一种自适应多层感知器信道均衡的模型,这种模型不仅对信道线性失真,而且对非线性失真也有很好的补偿作用。分析了人工神经网络(ANN)均衡器的设计方法,由于精确地分析感知器均衡器的位误差概率很困难,故通过模拟仿真的方式结出了与线性均衡器的性能比较。
This paper developed a multilayer perception adaptive equalizer model which uses the self-learning and nonlinear capability of Neural net(NN). This model has the ability to compensate not only for the linear distortion but also for the nonlinear distortion. Since exact analysis of the bit error probability for neutral net equalizer is very difficu, we consider simulation to compare its performance with the linear equalizer.
出处
《宇航计测技术》
CSCD
1997年第1期21-25,共5页
Journal of Astronautic Metrology and Measurement
关键词
信道均衡
多层感知器
人工神经网络
均衡器
^+Adaptive equalizer
^+Multilayer equalizer
^+Artifical neural network
^+Maximum likelihood ratio