期刊文献+

基于分形的肝脏B超图像的识别方法 被引量:1

A B Scan Liver Image Recognition Classifier Based on the Fractal Dimension Model
下载PDF
导出
摘要 本文首先引入离散分形布朗随机场模型,得到肝脏B超图像的分形维数与变差函数之间的关系。分形维数可以通过计算图像的变差函数并用最小二乘线性回归法来得到,它被选为图像的特征值,做为分类依据。实验表明,正常肝脏与癌变肝脏的B超图像表现出不同的灰度值空间变化特征。采用不同的滞后距离方向对最终的图像分类结果有一定的影响,使用四个方向的平均值的分类精度最高。 We first get the relationship between the fractal dimension and the variogram of the liver B scan image using the discrete fractional Brownian random field(DFBRF) model. The fractal dimension can be achieved by calculating the variogram and using quadratic programming, which is used in the classfication. The result suggests that the fraetal dimensions of the two groups are different. Using different directions, the classfication has a little difference, and the classfication accuracy with the average result is the highest.
作者 陈彦华
出处 《计算机工程与科学》 CSCD 2007年第7期49-50,共2页 Computer Engineering & Science
关键词 肝脏B超图像 分形维数 变差函数 B-scan liver image fractal dimension variogram
  • 相关文献

参考文献5

  • 1Akiyama I,Saito T,Nakamura M,et al.Tissue Characterization by Using Fractal Dimension of B Scan Image[A].Proc of IEEE Utrasonics Symp[C].1990.1353-1355.
  • 2Mandelbrot B B.The Fractal Geometry of Nature[M].San Francisco:Freeman,1982.
  • 3Kube P,Pentland A.On the Imaging of Fractal Surface[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2004,10(5):704-707.
  • 4Kaplan L M.Extended Fractal Analysis for Texture Classification and Segmentation[J].IEEE Trans on Image Processing,2003,8(11):1572-1585.
  • 5陆波,尉询楷,毕笃彦.支持向量机在分类中的应用[J].中国图象图形学报,2005,10(8):1029-1035. 被引量:23

二级参考文献21

  • 1范昕炜,杜树新,吴铁军.粗SVM分类方法及其在污水处理过程中的应用[J].控制与决策,2004,19(5):573-576. 被引量:15
  • 2尉询楷,陆波,汪诚,路建明,李应红.支持向量机在航空发动机故障诊断中的应用[J].航空动力学报,2004,19(6):844-848. 被引量:29
  • 3Inoue T, Abe S. Fuzzy Support Vector Machines for Pattern Classication [R]. TR2001-005, WashingtonDC, America:Washington Istitute of Technology.
  • 4Lin Chunfu, Wang Shengde. Fuzzy support vector machines [J].IEEE Transactions on Neural Networks, 2002, 13(3 ):464 - 471.
  • 5Huang Han-Pang, Liu Yi-Hung. Fuzzy support vector machines for pattern recognition and data mining [J]. International Journal of Fuzzy Systems, 2002, 14(3) :25 - 28.
  • 6Ayat N E, Cheriet M. A new support vector machine kernel for pattern recognition, application to digit image recognition [A]. In:Proceedings of the 6th International Conference on Document Analysis and Recognition[C], Seattle, USA,2001:1215 -1219.
  • 7Vapnik V N. The Nature of Statistical Iearning Theory [M]. New York: Springer, 1995.
  • 8Vapnik V, Levin E, Le Cun Y. Measuring the VC-dimension of a learning machine [J]. Neural Computation, 1994,8 (5) : 51 - 76.
  • 9Burges C. A tutorial on support vector machines for pattern recognition [ J ]. Data Mining and Knowledge Discovery, 1998,2(2): 1 -47.
  • 10Osuna E, Freund R. Support vector machines[ A]. In: Training and Applications[R]. Technical Report Alm-1602, Cambridge MA,USA: MIT, 1997,2:527 -531.

共引文献22

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部