摘要
码长为2n(n为奇数)的循环码被称为奇偶长的循环码。本文证明了F2+uF2上奇偶长循环码具有形如(a1(x2)a3(x2)a4(x2)a5(x)a6(x),ua1(x2)a2(x2)a4(x)a5(x2))的结构,其中ai(x),i=1,2,…,6,满足■6i=1ai(x)=xn-1,而且a5(x)≡a5(x)(modu),并给出了奇偶长循环码之对偶码的生成元表达。
A cyclic code with length 2n(n is odd)is called a cyclic code with oddly even lengths. We prove that any cyclic code over F2 +uF2 with oddly even lengths has generators of the form (a1 (x^2 )a3 (x^2 )a4 (x^2 )a5^ ~(x)a6 (x), ua1 (x^2 )a2 (x^2)a4 (x)a5 (x^2)), whereПi=1^6ai(x)=x^n-1,a5^ ~(x)≡a5(x)(modu),and. the structure of its dual code has been given in this paper as well.
出处
《计算机工程与科学》
CSCD
2007年第7期74-76,共3页
Computer Engineering & Science
基金
国家自然科学基金资助项目(60573028)
东南大学移动通信国家重点实验室开放基金资助项目(A200503)