摘要
Many plant mltogen-actlvated protein klnases (MAPKs) play an important role In regulating responses to both ablotlc and biotic stresses. The first reported rice MAPK gene BWMK1 Is Induced by both rice blast (Magnaporthe grisea) Infection and mechanical wounding. For further analysis of Its response to other environmental cues and plant hormones, such as jasmonlc acid (JA), salicylic acid (SA), and benzothladlazole (BTH), the promoter of BWMKf was fused with the coding region of the β-glucuronldase (GUS) reporter gene. Two promoter-GUS constructs with a 1.0- and 2.5-kb promoter fragment, respectively, were generated and transformed into the Japonica rice cultIvars TP309 and Zhonghua 11. Expression of GUS was Induced in the transgenic lines by cold, drought, dark, and JA. However, light, SA, and BTH treatments suppressed GUS expression. These results demonstrate that BWMK1 Is responsive to multiple ablotlc stresses and plant hormones and may play a role In cross-talk between different signaling pathways.
Many plant mltogen-actlvated protein klnases (MAPKs) play an important role In regulating responses to both ablotlc and biotic stresses. The first reported rice MAPK gene BWMK1 Is Induced by both rice blast (Magnaporthe grisea) Infection and mechanical wounding. For further analysis of Its response to other environmental cues and plant hormones, such as jasmonlc acid (JA), salicylic acid (SA), and benzothladlazole (BTH), the promoter of BWMKf was fused with the coding region of the β-glucuronldase (GUS) reporter gene. Two promoter-GUS constructs with a 1.0- and 2.5-kb promoter fragment, respectively, were generated and transformed into the Japonica rice cultIvars TP309 and Zhonghua 11. Expression of GUS was Induced in the transgenic lines by cold, drought, dark, and JA. However, light, SA, and BTH treatments suppressed GUS expression. These results demonstrate that BWMK1 Is responsive to multiple ablotlc stresses and plant hormones and may play a role In cross-talk between different signaling pathways.
基金
Supported, in part, by a Start-up Fund from the 0hio Agricultural Research and Development Center and the 0hio State University, the National Natural Science Foundation of China (30470990), and Scientific Research Fund of Hunan Provincial Education Department (04A024). Publication of this paper is supported by the National Natural Science Foundation of China (30624808).Acknowledgements The authors thank Drs Megan Griffith at Latrobe University in Australia and Beth Hazen at American Journal of Botany for suggestions and help with the preparation of the manuscript, and Maria Billizzi for technical assistance.